~S EPFL

Disal

Start: 01.07.2023

SIL program , IC-XXX, DISAL-SP111 Finish: 31.08.2023

Using neural networks to model a multi-robot lane
driving scenario

Oussama Gabouj

Professor: Alcherio Martinoli
Assistant: FirstName LastName

This page intentionally left blank.

Contents

1 Introduction 4
2 Data analysis 5
2.1 Problem statement L. 5
2.2 WeBots simulation data analysis 6
2.3 Robot speed data analysis 6
2.4 Dataset challenges and potential solutions 7
3 Deep Neural network 9
3.1 Neural network training 9
3.2 Non Graph neural network 10
3.3 Graph neural network GNN 12
3.4 Under performance analysis 13
4 Deep Reinforcement Learning 15
4.1 Environment 15
4.2 Agent 16
4.3 Reward 17
4.4 Reinforcement learning simulation result 21
5 Imitation Learning 23
5.1 Behaviour cloningo 23
5.2 Behaviour cloning with Dataset Aggregator 24
5.3 Imitation learning models comparison 25
6 Models comparison 26
7 Conclusion 28
Bibliography 29

Chapter 1 Introduction

In recent years, the utilization of multiple robots for various applications
has gained substantial attention due to its potential to improve efficiency
and productivity. One common scenario involves a group of robots navi-
gating through designated lanes, each possessing its own unique position,
finite state machine (FSM), and behavior. While simulation tools like We-
Bots offer an exact solution in replicating trajectories, a significant challenge
emerges when aiming to enhance both scalability and computation time.
For instance, a 180-second simulation can demand as much as 90 seconds
for WeBots to generate all the trajectories.

This project addresses both scalability and computation time in robot
lane navigation simulations by leveraging various deep machine learning ap-
proaches. Traditional simulation methods suffer from a significant compu-
tational burden. In contrast, deep learning techniques offer the potential to
alleviate this issue by effectively approximating robot trajectories. However,
a central concern is that conventional neural network models do not inher-
ently account for the finite state machine (FSM) of each robot, potentially
leading to less precise trajectory predictions.

The project’s specific goal is to construct a neural network that can
generate trajectories swiftly and efficiently while maintaining an acceptable
level of precision. This involves exploring a range of deep learning techniques
and methodologies to determine the most suitable approach for the given
problem. The project will explore the following deep learning methods:
Classic Neural Networks, Graph Neural Networks (GNNs), Reinforcement
Learning and Imitation Learning.

Throughout the project, a comprehensive evaluation of each method’s
performance will be conducted, considering factors such as trajectory accu-
racy as well as computation time. Ultimately, the project seeks to determine
which approach provides the best trade-off between speed and accuracy for
generating scalable trajectories.

Chapter 2 Data analysis

In this section, we will focus on defining the challenges we face and iden-
tifying key variables. We will analyze the distributions of these variables
and their inherent characteristics. Originating from the Webots simulation,
the data’s unique nature demands special attention. We aill also discuss
potential preprocessing and post-processing of the raw data, going beyond
description to extract its essence and align outputs with objectives.

2.1 Problem statement

Each individual robot is confined to a designated lane and retains the ca-
pability to maneuver between these lanes based on its distinctive behavior.
The dataset compiled from these navigation instances comprises crucial posi-
tional information: x, y, and € coordinates of each robot. These coordinates,
illustrated in Figure 2.1, serve as vital components for understanding the
precise movements of the robots within the lane-based context. This compu-
tational challenge hinges on accurately predicting the trajectories of robots
as they navigate.

Figure 2.1: Robot simulation environment

Oussama Gabouj: Modeling a multi-robot lane driving scenario

2.2 WeBots simulation data analysis

The dataset contains comprehensive robot information, encompassing key
variables such as position and orientation. The table 2.2 represents the
variation of these different variables based on the simulation. It includes
the variables x, y, and @, along with their corresponding minimum and
maximum values, as well as the range, which is the difference between the
maximum and minimum values for each variable. There are 3712*20 samples
in our dataset.

Variable min max | range
X -2.119 | 2.369 | 4.489
y -1.1267 | 1.13 | 2.25674
6 - T 27

Table 2.1: Robots’ position range

The figure below illustrates the data distribution: the x position seems to
be balanced, while the y and # variables exhibit imbalance. It is imperative
to consider these imbalanced conditions during the training of our models.

x distribution y distribution theta distribution

Figure 2.2: Data distribution

2.3 Robot speed data analysis

Simulating robot trajectories involves a critical consideration of the distribu-
tion of speed data, given that speed fundamentally influences the predictions
generated by all models. Accurately replicating trajectories hinges on the
neural network’s ability to account for the variations in speed that robots
exhibit during their movements. Analyzing the speed distribution is essen-
tial to ensure that the generated trajectories align with real-world scenarios,
enhancing the network’s capacity to generalize across different movement
speeds and contribute to more reliable predictions. The table 2.3 represents
the variation of these different velocities:

The figure 2.3 illustrates the data distribution. Knowing that the output
delta_x, delta_y, delta_teta are not in the same units, this can lead to sev-
eral problems, including difficulties in interpretation and evaluation of the

Oussama Gabouj:

Modeling a multi-robot lane driving scenario

Variable min max range
deltax | - 0.0127 | 0.0127 | 0.025424
delta_y | - 0.0122 | 0.0122 0.024

delta_teta | 0.0997 0 0.0997

6000

4000

Table 2.2: Robots’ velocity range

delta x distribution delta y distribution delta teta distribution

20000
6000
4000 10000
2000 2000
0 0 0 T

T T T T
—0.01G-0.0050.000 0.005 0.010 —0.010-0.005 0.000 0.005 0.010 0.00 0.02 0.04 006 0.08 0.10

Figure 2.3: Data distribution

model’s performance. We need aslo to consider these imbalanced conditions
during the training of our models.

2.4 Dataset challenges and potential solutions

In the subsequent sections 2.2 and 2.3, it is imperative to address the ensuing
challenges:

e Difficulty in interpretation: When the predicted values are in differ-

ent units, it becomes challenging to interpret the magnitude of the
predictions.

Evaluation metrics: If the target variable and predicted values are not
in the same units, standard evaluation metrics such as mean squared
error (MSE) or mean absolute error (MAE) may not provide a mean-
ingful measure of the model’s performance.

Unbalanced data: The distribution of classes in the dataset is signifi-
cantly skewed. Trained on unbalanced data can become biased towards
the majority class. Since the model’s objective is usually to minimize
overall error, it may focus more on accurately predicting the majority
class, while paying less attention to the minority class. We can clearly
see that dg is not verry significant for §; = 32 ms. Moreover the &,
and ¢, are not balanced.

To address the potential problems caused by unbalanced data, data pre-

processing plays a crucial role. The following steps need to be performed:

e Normalizing the data: we scale both the target variable and predicted

values to a common scale. Since the data distribution is not normal
using min-max scaling is better than z-score normalization.

Oussama Gabouj: Modeling a multi-robot lane driving scenario

e Balance the data: This step involves down sampling the majority class
to create a more balanced dataset by randomly selecting a subset of
examples from the majority class to match the minority class size.

We also need to consider a post processing procedure in order to convert
the predicted values into the desired units.

Chapter 3 Deep Neural network

3.1 Neural network training

In our study, we have implemented a variety of different models, which can
be classified into two groups: graph neural networks, including GAT and
GCN, and non-graph neural networks, featuring well-known architectures
like MLP, CNN, and LSTM. In the following sections, we will unveil the
specifics of each of these neural network configurations, providing details
about the outcomes they have produced.

All the models are trained in an open loop configuration, as illustrated
in Figure 3.1. For each randomly chosen position, the model predicts the
corresponding delta position. This allows us to anticipate the next position
Z(t + 1) by adding the model’s prediction to the current position.

Neural Network % %

Figure 3.1: Open loop simulation

Subsequently, the models are subjected to closed loop testing, as de-
picted in Figure 3.2. In this scenario, the neural network is tasked with
simulating the robot’s positions from a given initial position. The network’s
output, concatenated with the input, yields the next position #(¢+1). This
calculated position then becomes the subsequent input for the neural net-
work, and consequently forecast the position at the subsequent time step
Z(t+1).

Neural Network

Figure 3.2: Closed loop simulation

Oussama Gabouj: Modeling a multi-robot lane driving scenario

3.2 Non Graph neural network

In this section,we will explore diverse conventional machine learning ap-
proaches. This exploration aims to gauge their performance within this
context. We implemented fundamental neural network architectures, such
as the multi-layer perceptron (MLP), convolutional neural network (CNN),
and one example of recurrent neural network: Long short term memory
(LSTM). These sequential investigations will provide valuable insights into
the effectiveness of these models within the given framework.

MLP We started with MLP network because it is very simple to imple-
ment. In our implementation it takes around 50 seconds for training. How-
ever, it treats each input independently and do not consider the context or
relationships between inputs. We approach each node, symbolizing a robot,
as an elementary input entity. For instance, if our dataset comprises 3712
graphs, each containing 20 robots, we’re working with a grand total of 3712
* 20 data samples. The model’s input 3 * n and output is 3 * m where
'n’ is the number of prior positions that the robots have assumed, and 'm’
indicates the number of subsequent positions the model aims to predict.
This introduction of hyperparameters serves a crucial purpose: preventing
the model from solely focusing on immediate predictions. Instead, it en-
courages the model to navigate through the entire simulation horizon. We
adopted a cross-validation approach to fine-tune our model’s performance:
We systematically adjusted the 'n’ parameter from 1 to 10, and 'm’ from 1
to 5.

CNN It’s essential to highlight that the MLP network treats each input
in isolation and doesn’t factor in context or relationships between inputs.
That is why we transitioned into the CNN model. In this setup, we consider
each input as a simulation step represented by a 2D matrix containing data
from 20 robots. Each robot was equipped with 3 * n features, much like
the structure in the MLP network. Correspondingly, the model’s output
took the form of a vector: 20 * 3 * m. Here, 'n’ represents the count of
preceding positions taken by the robots, and 'm’ denotes the number of
anticipated future positions. The incorporation of hyperparameters proved
vital in steering the model away from exclusively focusing on short-term
predictions. Instead, it guided the model to extend its predictions across
the entirety of the simulation’s horizon. As part of our model refinement,
we introduced a cross-validation approach, systematically adjusting the n’
parameter from 1 to 10, and 'm’ from 1 to 5. Within this architecture,
we employed two convolutional layers and followed them up with two fully
connected layers. This design aimed to harness the spatial relationships and
patterns present in the data, allowing for a more nuanced understanding of
robot movements throughout the simulation.

10

Oussama Gabouj: Modeling a multi-robot lane driving scenario

LSTM We maintained a similar architecture as that of the MLP network.
However, we opted for the LSTM (Long Short-Term Memory) model due
to its recurrent nature. RNNs, like LSTM, are particularly advantageous
when dealing with data that exhibits dynamic changes in relation to previ-
ous steps. Similar to the MLP approach, we considered each input as a 2D
matrix portraying a simulation step, containing information from 20 robots.
Each of these robots retained 3 * n features, paralleling our earlier setups.
Consequently, the model’s output maintained its form as a vector: 20 * 3 *
m. By employing the LSTM architecture, we aimed to effectively capture
the temporal dependencies and evolving patterns in the data. The inherent
recurrent nature of LSTM units enables them to retain and utilize informa-
tion from previous time steps, rendering them particularly well-suited for
scenarios where such context matters.

Results The resulting outcomes are visually depicted in the figures 3.3
and 3.4.

MLP_3prev_2next trajectory CNN_3prev_2next trajectory LSTM_3prev_2next trajectory
10 10

05 05 05

00 0.0 0.0
-05 -05 -05
-10 -1.0 -1.0
-15 -15 -15
-20 -20 -2.0

-25 -25 -25

-30 -3.0 -3.0

-10 -5 [H -10 -5 0 H -10 -5 0 5

Figure 3.3: MLP, CNN and LSTM open loop simulation

MLP_3prev_2next trajectory CNN_3prev_2next trajectory LSTM_3prev_2next trajectory

-50 -40 -30 -20 -10 0 10 -50 -40 -30 -20 -10 0 10 -50 -40 -30 -20 -10 0 10

Figure 3.4: MLP, CNN and LSTM closed loop simulation

Initial findings showcas the model’s proficiency in predicting outcomes
for the open loop simulation. However, when we apply this neural network to
the closed loop simulation, the results deviate from our intended objectives.
The accumulation of residual errors became evident, leading to a situation
where subsequent inputs were progressively pushed farther away from the
model’s latent space. Consequently, this phenomenon resulted in undefined
robotic behaviors within the simulation.

11

Oussama Gabouj: Modeling a multi-robot lane driving scenario

3.3 Graph neural network GNIN

GNNs can capture both local and global context by aggregating and prop-
agating information through the graph structure. They can learn repre-
sentations that capture the dependencies and interactions between nodes,
considering both their attributes and relationships with neighboring nodes
as illutrated in [1]. We are going to use the GCN (Graph Convolutional
Network) and GAT (Graph Attention Network) models.

¢y =1/ JIN: N o; = softmax(LeakyReLU(2z [Wx; || Wx;])

GCN GAT

Figure 3.5: GAT and GCN architectures

As we can see from the figure 3.5, the GCN utilizes a neighborhood aggre-
gation scheme (local aggregation), where each node aggregates information
from its neighboring nodes by taking the average or sum of their features.
However, the GAT uses the attention mechanism. in order to allow each
node to attend to different neighbors with varying weights, capturing more
fine-grained relationships in the graph. We can say that GCN C GAT

GCN It is a convolutional neural network (CNN) adapted for graph-
structured data. This architecture has several advantages comparing with
the non graphs models: Ability to capture graph structure: and the mes-
sage passing and neighborhood aggregation. In fact, GNNs employ message
passing schemes to propagate information across the graph. This enables
GNNs to aggregate information from neighboring nodes.

GAT The GAT model extends the idea of attention mechanisms to graphs,
allowing each node to attend to different nodes with different weights. It
employs self-attention to determine the importance of each neighbor during
the aggregation process. It has more weights (more complex than GCN)
beacuse the attention weights are learned through a shared learnable at-
tention mechanism, allowing the model to adaptively assign importance to
neighboring nodes. We implemented the model as follows:

12

Oussama Gabouj: Modeling a multi-robot lane driving scenario

e 2 GAT layers with 2 heads each and 2 fully connected layer with Relu
as activation function

e 200 epochs and an adaptive leaning rate Ir = 0.1- 4% where t in number
of iterations

The provided figures 3.6 and 3.7 demonstrate the performance of the
GAT model. The figure 3.6 depicts the model’s predictions for a single time
step concerning a specific position. The model is designed and trained for
this sequential prediction task. The results indicate favorable performance.

GAT_3prev_2next trajectory GAT_3prev_2next theta prediction

- L >

-20 -15 -10 -05 00 05 10 15 20 0 500 1000 1500 2000 2500 3000 3500

Figure 3.6: Open loop simulation

However, in the figure 3.7, the model is tested in a closed loop setup.
Here, the predicted change in position (delta position, t) is added to the
current position (pos(t)) to obtain the new position (pos(t+1)), which is
then fed back as input to the model. Unfortunately, the model’s performance
in this closed loop scenario is suboptimal due to the accumulation of residual
errors over time.

GAT_3prev_2next trajectory

Figure 3.7: Closed loop
The GCN model also exhibits promising results when employed in an

open loop configuration, yet its performance deteriorates significantly in a
closed loop setting and it is worse than GAT model.

3.4 Under performance analysis

There are several plausible reasons for the underperformance of all the deep
learning models:

13

Oussama Gabouj: Modeling a multi-robot lane driving scenario

e The primary purpose of these models isn’t centered on simulating
robot paths: All the previous models are initially designed for tasks
other than simulating robot navigation paths. Their inherent archi-
tecture might not be optimally suited for this specific simulation task,
leading to compromised results.

e Accumulated residual errors leading to untrained spaces: The accumu-
lation of residual errors over successive time steps can force the model
into regions of the latent space it wasn’t explicitly trained on.

e Dynamic nature of the graph: The underlying graph in this scenario
isn’t static; it changes as the robot navigates, altering its neighbors.
This dynamic nature poses a challenge as the robot’s interactions with
its environment evolve over time. This dynamic graph structure ne-
cessitates frequent updates, and the time required to update the graph
for each iteration should be factored into the overall computation time.
For instance, while the neural network’s simulation time might be rela-
tively short (around 5 seconds), the additional 40 to 50 seconds needed
for graph updates can lead to longer and less efficient computations.
The graph neural network simulation requires approximately 60 sec-
onds, whereas the WeBots simulation takes 90 seconds for a 3-minute
simulation. Despite the model’s trajectory prediction deteriorating
significantly, the model’s speed remains unchanged, rendering it non-
scalable and misaligned with our objectives.

Considering these limitations, it’s essential to reassess the chosen models
and explore alternatives that might better align with the task’s requirements.
Other models or approaches could offer more accurate and efficient solutions,
especially when considering the dynamic and evolving nature of the robot’s
interactions within its environment.

14

Chapter 4 Deep Reinforcement
Learning

The models we've discussed so far lack the training needed to effectively
serve our study’s primary purpose. These models, which predict single time-
step movements, reveal limitations when used in a closed-loop simulation.
To overcome this challenge, a promising alternative lies in employing rein-
forcement learning. This alternative holds promise for our project due to
its ability to address the challenges posed by the accumulation of errors
in closed-loop simulations. Unlike the traditional models focused on single
time-step predictions, reinforcement learning allows the robot to learn and
adapt over time through trial and error. By iteratively interacting with
the environment and receiving feedback in the form of rewards, the robot
can gradually refine its decision-making process. This iterative learning ap-
proach enables the robot to correct for residual errors and adjust its actions
dynamically, making it well-suited for our navigation-focused study as high-
lighted in [2]

4.1 Environment

In the context of our study, reinforcement learning operates by having the
robot interact with its environment, making decisions based on its obser-
vations and receiving rewards that guide its behavior. The environment
encompasses an action space, representing the set of possible actions the
robot can take, and an observation space, encapsulating the information the
robot perceives from its surroundings. This setup allows the robot to learn
to navigate while gradually honing its decision-making process for enhanced
performance.

Observation space We set the Observation Space as follows: it is a 2D
dimension containing the robot’s recent positions, represented as vectors of
3D coordinates [x, y, theta]. These vectors encapsulate the robot’s location
(x, y) and orientation 6. To ensure consistent training, all variables within
this space are normalized to fall within the range [0, 1]. This normalization
process enhances the network’s ability to learn effectively, accommodating

15

Oussama Gabouj: Modeling a multi-robot lane driving scenario

varying data scales and facilitating convergence during training.

Action space This space plays a crucial role in dictating the robot’s pos-
sible maneuvers. By analyzing the normalized feature data, we discern dis-
tinct ranges for each action component. Specifically, the change in the x-
direction dz spans [-0.015, 0.015], while the y-direction dy covers [-0.03,
0.03], and the change in orientation d6 encompasses [-0.5, 0.5]. These de-
fined ranges shape the action space as a three-dimensional vector, with each
component varying independently within its respective boundary.

The figure 4.1 illustrates a visual representation of the environment,
succinctly defining both the action space, encompassing the actions that a
given agent can undertake, and the observation space, encapsulating the
information the agent can gather from its surroundings

Action
deliax : [-0.015,0.015]
deltay : [-0.03 , 0.03]
deltatheta: [-05 , 0.5] \‘
Agent
Observations

X1 H[401] o [Rowerd
x (t- 1-1, eward :
X (t-2) :[-1,1]':3: [0,1]
x(t-3) :[-1,1]
x(t-4) :[-1,1]

Figure 4.1: Reinforcement Learning implmentation

4.2 Agent

We have narrowed down our choices to algorithms that are compatible with
environments where actions are continuous and offer effective solutions:

e PPO (Proximal Policy Optimization): PPO is a policy optimization
algorithm that efficiently updates the policy in small steps, ensuring
that the policy doesn’t stray too far from its original form. This sta-
bility is achieved by enforcing a ”proximal” limit on policy updates,

16

Oussama Gabouj: Modeling a multi-robot lane driving scenario

preventing drastic changes that might lead to performance fluctua-
tions.

e A2C (Advantage Actor-Critic): A2C combines actor-critic architec-
ture with an advantage function, allowing the agent to understand the
value of taking certain actions relative to others. The actor chooses
actions, and the critic evaluates their quality, aiding in more informed
decision-making.

Moreover, we’ve opted for a Multi-Layer Perceptron (MLP) policy. Unlike
Convolutional Neural Networks (CNNs) that excel with image data, MLPs
are better suited for non-image data. MLPs consist of densely connected
layers, making them effective for handling structured and continuous data
like the observations and actions in our environment.

4.3 Reward

The rewards serve as the guiding signals that direct an agent’s behavior
towards achieving desired goals. They act as a feedback mechanism. In our
scenario, the robot’s behavior is evaluated based on a series of specific re-
wards, each designed to measure different aspects of its performance. These
rewards are assigned values between 0 and 1, reflecting the extent to which
the robot aligns with desired behaviors. The overall performance of the
robot is then determined by taking the average of these individual rewards.

Lane reward : The reward function decribed by 4.1 plays a big role in
how we judge the robot’s performance in our simulations by keeping an eye
on whether the robot behaves well in the lane or not. If the robot stays in
the same lane as the simulation and doesn’t get out of the lane, it gets +1.
Otherwise, the robot gets -1.

reward 1 = {1 et Xl = % v (4.1)
—1 otherwise
Where w is the lane width.
Reward - 1 Reward -1
([]
___________________ Co bl e

Figure 4.2: On lane reward

17

Oussama Gabouj: Modeling a multi-robot lane driving scenario

Trajectroy deviation : This reward,given by 4.2, has a simple goal: to
keep the robot on track. By comparing where the robot is supposed to be
(its predicted position, ¥pred) with where it actually is in the simulation
(Zsim), and using a positive real hyper parameter A, this reward pushes the
robot to stay close to the desired trajectory. The closer it sticks to the path,
the higher the reward is. If the robot strays, the reward drops, nudging it
back toward the right course. In Figure 4.3, you can see a visual example
of how this reward changes as the robot’s position shifts from the intended
trajectory.

reward 2 = ef)"”xpredfxsim” (42)

\ Reward

Max possible error

/

-
Il Xpted - Xsim Il

007 0.8 0

o
g
-
5
g
g
&
§

Figure 4.3: Trajectory deviation reward

Angle deviation reward : This equation 4.3, focuses on the robot’s
alignment with the road’s curve, by checking if the robot’s heading matches
the curve it’s on. If the cosine of the angle between the predicted heading
(Zprea) and the curve’s tangent is above a certain threshold angle, the robot
gets +1 reward (approval for good alignment). If not, the reward stays
at 0, indicating that the robot needs to adjust its direction. The figure 4.4
shows how the alignment reward changes as the robot’s heading matches or
deviates from the road’s direction.

1 if cos (Zpred, Tsim) > threshold_angle (4.3)

reward 3 =
0 otherwise

18

Oussama Gabouj: Modeling a multi-robot lane driving scenario

Reward = 1 Reward = 0

Figure 4.4: Angle deviation reward

Smoothness reward : This reward function aims to minimize the dis-
parities in velocity changes between the robot’s predicted and simulated
paths, resulting in smoother and more predictable motion. The figure 4.6
ilustrates the area that we want to minimize. Just like the previous rewards,
this one also operates on the concept of exponential decay. This reward com-
putes the absolute differences in velocity changes for the robot’s predicted
trajectory (Nxz pred) and the simulated trajectory (A_’xi sim) over a span
of 5 time steps. These differences are then averaged, multiplied by a positive
real parameter A\, and passed through an exponential function as shown in
the equation 4.4. The resulting value is used as the reward.

reward 4 = e 5 =085 prea =A% sim| (4.4)

Figure 4.5: Smoothness reward: Area to minimize

19

Oussama Gabouj: Modeling a multi-robot lane driving scenario

\ Reward

Max possible velocity error

S

\\ (TVptea - Vsinll
g oqT5 23 0025 a%g »

Figure 4.6: Smoothness reward

Simulation length reward : The purpose of this reward is to encourage
the robot to complete the entire simulation rather than just focusing on
specific segments. This can be especially useful when the robot develops
strategies to follow only parts of the lane and then end the simulation early.
The reward function works by considering the ratio of the current episode
length to the total length of the simulation. The equation exponentiates this
ratio after multiplying it by a positive real parameter A, and then subtracts
the result from 1. In simpler terms, if the robot manages to complete the
entire simulation (episode length equals total simulation length), this reward
becomes 1, indicating successful completion. As the robot tends to end the
simulation early or deviate from the desired lane, this reward decreases.
This reward encourages the robot to stay committed to the full simulation
duration and stay on track throughout the entire scenario so that the robot
doesn’t take shortcuts or neglect parts of the task.

~A episode length
reward 5 =1 exrp total simulation length (45)

episode lengtt

Figure 4.7: Simulation length reward

Theta reward The focus of this reward function is to guide the robot in
maintaining a precise alignment with the path’s center direction. The reward

20

Oussama Gabouj: Modeling a multi-robot lane driving scenario

operates by quantifying the orientation error between the robot’s predicted
trajectory (6; pred) and the simulated trajectory (6;m) over a span of 5
time steps. It does so by computing the absolute difference between these
angles, considering both the direct difference and the wrapped difference
due to circular orientation and then computes the minimum between these
two angle differences across the time steps. This average error is used as
an exponent for the base of the exponential function. The idea here is to
strongly penalize any orientation errors, encouraging the robot to closely
match the path’s center orientation.

reward 6 — e_é Z:?:l mln(lez pred_ai sim’7‘0i pred_ei sim_ll) (46)

Figure 4.8: Theta reward

4.4 Reinforcement learning simulation result

In Figure 4.9, the simulation in a closed loop configuration is demonstrated
using a reinforcement learning neural network. The green trajectory rep-
resents the desired path generated by the WeBots that the robot should
ideally follow, while the red trajectory depicts the output from the neural
network.

rl agent trajectory

Figure 4.9: Reinforcement learning trajectory simulation using PPO policy

21

Oussama Gabouj: Modeling a multi-robot lane driving scenario

Although the results show improvement compared to previous models, there
are still oscillations and challenges in smoothly navigating turns. This be-
havior might stem from the neural network’s training duration of only 1 mil-
lion epochs, which consumed approximately 3 hours of training time. It’s
worth noting that with an extended training period, more favorable out-
comes could potentially be achieved by mitigating the observed oscillations
and enhancing the network’s ability to navigate turns effectively.

22

Chapter 5 Imitation Learning

Our problem involves the intricate navigation of a succession of decisions,
each intricately entwined with the dynamic observations of the evolving
environment, thereby encapsulating the complexities intrinsic to sequential
decision-making. The performance evaluation of our system transpires via
the same reward function of the reinforcement learning.

In this approach, we suppose the existence of an expert driver. Imitation
learning entails enabling a novice to acquire the art of emulating this expert
prowess, extracting insights from observations made at specifically desig-
nated intervals. This approach, akin to a kinship of supervised learning,
entails the tuition of a policy 7 through the utilization of an encompassing
dataset D which facilitates navigating the trajectory towards adept imitation
through iterative exposure to carefully curated observations.

5.1 Behaviour cloning

Behavior Cloning is the a fundamental approach in imitation learning. This
method leverages expert-generated data, comprising a collection of demon-
strations encompassing observations paired with corresponding actions and
resultant rewards. In our specific scenario, we engage three distinct experts:

e WeBots Data Expert: This expert is perfect. The algorithm endeav-
ors to mimic the capabilities of this expert. However, the model is
confined to learning solely from impeccable trajectories, which makes
it unable to rectify its own mistakes due to the absence of exposure to
exploration within its surroundings.

e Reinforcement Learning Agent Expert: While this expert may not be
flawless, as discussed earlier, it emerges as a prominent contender. De-
spite certain limitations, its performance can be deemed commendable,
considering the constraints of the environment.

e Hybrid Expert (Combination of 1 and 2): We combine both the per-
fect demo set and the RL agent. The former exhibits flawless scores
(288/288), while the latter, though not impeccable, offers a more dy-
namic approach to learning.

23

Oussama Gabouj: Modeling a multi-robot lane driving scenario

The results depicted in Figure 5.1 illustrates the outcomes of three mod-
els: three behaviour cloning models and the hybrid models. As anticipated,
the hybrid models and the RL models outperform the WeBots expert. This
outcome is coherent with expectations, given that the models possess the
capability to learn from their mistakes and explore the surrounding space
more effectively.

BC using RL expert — BC using WeBots expert - BC using hybrid expert

o=

AN

Figure 5.1: Behaviour cloning trajectory simulation

However, this Supervised imitation learning algorithm using only WeBots
Data isn’t without its challenges, particularly the issue of compounding
errors. When the novice model, deviates from an expert trajectory, rec-
tification becomes an arduous task. The critical concern lies in the fact
that when a Behavior Cloning-trained policy falters in predicting at time
step ”t,” it can inadvertently perpetuate errors over subsequent steps. This
predicament arises due to the model’s lack of exposure to unseen states
during training, hindering its ability to navigate unfamiliar circumstances
effectively.

To surmount this intricate challenge, a potential solution lies in using
the power of the hybrid expert or the Dagger algorithm (see section 5.2),
both of which warrant thorough exploration in the upcoming section. These
approaches offer novel strategies to enhance the learning process, mitigating
the issue of compounding errors and equipping the model with the versatility
to navigate through a wider array of circumstances adeptly.

5.2 Behaviour cloning with Dataset Aggregator

Unlike Behavior Cloning, DAgger refines its policy by iteratively correcting
its missteps, culminating in a more robust and adeptly navigational policy.
by enabling the model to learn from its own errors. This entails training an
agent using the mistakes it encounters during its operation. This process
unfolds by first testing agent policy and recording the states it navigates
through. Subsequently, a new agent, is trained using the recorded states,
building on the experiences of its predecessor agent. The figure 5.2 shows
the result.

Oussama Gabouj: Modeling a multi-robot lane driving scenario

1.0 4

0.8

0.6

0.4

02 4

0.0

[DAgger agent]

0.0

0.2

0.4 0.6

0.8 10

Figure 5.2: DAgger trajectory simulation

5.3 Imitation learning models comparison

In this section, a comprehensive analysis of all the trained models using
imitation and reinforcement learning is presented in the table below. The
assessment takes into account key metrics such as the mean reward, and
training time. This comparison offers valuable insights into the performance

and efficiency of each model.

Models mean reward training time (min)
RL agent 80 / 288 ~ 200
BC WeBots expert 36 / 288 ~ 75
BC RL expert 100 / 288 ~ 76
BC hybrid expert 110 / 288 ~ 126
IL (DAgger) 50 / 288 ~ 136

From the provided table, it becomes evident that the BC hybrid model
stands out as the most favorable option, boasting the highest mean reward.
However, it’s worth noting that achieving this performance requires the
integration of an RL agent, resulting in a combined training time of 326
minutes (RL agent training time of 200 minutes plus BC model training

time of 126 minutes).

25

Chapter 6 Models comparison

When assessing the performance of various models in both open-loop and
closed-loop scenarios, distinct trends become apparent. In the open-loop for-
mat, all models exhibit remarkable accuracy in trajectory prediction. Deep
neural networks particularly shine, outperforming reinforcement learning
and imitation learning while also requiring less training time.

Transitioning to closed-loop scenarios, a divergence emerges. Reinforce-
ment learning and imitation learning models exhibit the most promising re-
sults. These models generate trajectories that closely mimic the simulated
ones within a remarkably short timeframe; for instance, they can complete a
3-minute experiment simulation in just approximately 7 seconds. However,
it’s worth noting that the training process for these closed-loop models can
be more intricate and time-consuming,.

The comparative assessment is synthesized in the table below, offering
a comprehensive overview of the performance of each implemented model
across open and closed-loop scenarios. This analysis serves as a valuable
guide for determining the most suitable model for different real-world appli-
cations, striking a balance between accuracy, training time, and the ability
to account for complex robot behaviors.

Models open_loop closed loop training Simulation
simulation | simulation | time (min) time (s)

WeBots v v - ~ 90
MLP v X ~1 ~ 2
CNN v X ~3 ~3
LSTM v X ~ 2 ~ 4
GNN: GCN v X ~ 2 ~ 3
GNN: GAT v X ~3 ~5
RL (PPO) v v ~ 200 ~ 7
BC WeBots v v ~ 75 ~ 7
BC RL v v ~ 76 ~ 7
BC hybrid v v ~ 136 ~ 7
IL (DAgger) v v ~ 126 ~ 7

Moving forward, our focus will primarily be on models suitable for closed-
loop simulations specifically, reinforcement learning and imitation learning
algorithms. In the context of these models, we can achieve considerable
efficiency gains. For instance, we can simulate 20 robots for 180 seconds
simulation length and it takes only 7 seconds to compute the whole simula-
tion. This starkly contrasts with WeBots, which requires approximately 90
seconds for the same task. This achievement signifies that we have success-
fully reached our ultimate objective: reducing computation time, achieving
scalability, and preserving trajectory fidelity as closely as possible, as de-
picted in Figure 5.1

27

Chapter 7 Conclusion

Throughout this study, we conducted an in-depth exploration of various
models to address the challenges posed by robot trajectory prediction. Our
findings underscore the effectiveness of reinforcement learning (RL) and im-
itation learning for such applications. RL, despite its lengthier training
times, excels in complex scenarios. we hold the belief that it will outperform
other approaches in such intricate situations. On the other hand, imitation
learning proves to be efficient in terms of training time, but demands expert
guidance and operates within the confines of the patterns it has been trained
to replicate.

It is worth emphasizing that while the RL model requires fine-tuning, we
believe its results can be optimized for more intricate simulations involving
robots with dynamic behaviors and varying lanes. This project presented
its share of difficulties, from delving into lectures and online resources to the
implementation of diverse models. Transitioning from conventional neural
networks to graph neural networks, RL, and imitation learning introduced
complexities, but the project encompassed a comprehensive spectrum of ma-
chine learning aspects while demonstrating the versatility and adaptability
of machine learning techniques in solving complex problems.

28

Bibliography

[1]

[10]

[11]

P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” ICLR, 2018.

D. Kamranl, J. Zhul, and M. Lauerl, “Learning path tracking for real
car-like mobile robots from simulation,” IEEEXplore, 2019.

D. Garg, “Learning to imitate.” http://ai.stanford.edu/blog/learning-
to-imitate.

Divyansh, “A brief overview of imitation learning.”
https://smartlabai.medium.com/a-brief-overview-of-imitation-
learning-8a8a75c44a9c.

Datasolut, “Reinforcement learning: Wenn ki auf belohnungen
reagiert.” https://datasolut.com/reinforcement-learning.

Distill, “A gentle introduction to graph mneural networks.”
https://distill.pub/2021 /gnn-intro.

Datacamp, “A comprehensive introduction to graph neural net-
works (gnns).” https://www.datacamp.com/tutorial /comprehensive-
introduction-graph-neural-networks-gnns-tutorial.

OpenAl, “Stable Baselines3.” https://github.com/DLR-RM /stable-
baselines3.

pyg-team, “pytorch geometric.” https://github.com/pyg-
team/ pytorchyeometric.

M. Labonne, “Graph attention networks: Self-attention explained.”
https://towardsdatascience.com/graph-attention-networks-in-python-
975736acHclc.

Neptune.ai, “Graph neural network and some of gnn applications:
Everything you need to know.” https://neptune.ai/blog/graph-neural-
network-and-some-of-gnn-applications.

29

