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Abstract

Large language models have become essential
tools, especially for students seeking assistance
with complex subjects. Despite their capabili-
ties, these models often struggle with intricate
questions in advanced scientific fields. To ad-
dress this, our project develops an advanced
educational assistant chatbot utilizing the quan-
tized Gemma 7B model. By employing Direct
Preference Optimization (DPO) to fine-tune
responses according to user preferences and
integrating Retrieval-Augmented Generation
(RAG) to incorporate external knowledge, we
aim to enhance the chatbot’s accuracy and rele-
vance in answering multiple-choice questions.
Our findings indicate that the fine-tuned model
significantly outperforms baseline models in
delivering accurate responses. Although we en-
countered limitations, such as not fully achiev-
ing benchmark performance due to testing con-
straints, our work demonstrates the potential of
these techniques in improving educational tools.
Future efforts will focus on expanding the RAG
database and refining prompt engineering to
further elevate the model’s performance.

1 Introduction

Large language models have rapidly advanced and
become crucial for students’ learning. However,
they still struggle with complex questions in ad-
vanced scientific fields.

Our project develops an advanced educational
chatbot based on the quantized Gemma 7B model
(unsloth, 2023). This model, known for its effi-
ciency and scalability, serves as the foundation
for our chatbot. To align the generated responses
with user preferences, we train a generator model
that produces completions ranked as preferable us-
ing DPO. This technique allows us to finetune the
model to better meet the specific needs and ex-
pectations of users. Additionally, we enhance the
chatbot’s performance by integrating the RAG fea-
ture, which leverages external knowledge sources

to provide more relevant answers. This integration
ensures that the chatbot delivers precise and in-
formative responses, thereby improving its overall
effectiveness in educational applications.

2 Related Work

This section provides an overview of existing work
relevant to our project, highlighting how it builds
upon and differentiates from prior efforts.

Pre-trained generative models, such as Trans-
formers, are effective for tasks like translation,
summarization, and question answering. These
models use structures like encoder-decoder (e.g.,
BERT, T5) or decoder-only (e.g., LLaMA, Mistral,
Gemma). The Gemma-7B model (Google, 2024),
developed by Google DeepMind, is lightweight,
scalable, and efficient. Techniques like quantiza-
tion and Low-Rank Adaptation (LoRA) enhance
performance and allow deployment on various plat-
forms. Unsloth’s integration of Gemma-7B com-
bines these methods, optimizing resource usage
and ensuring robust performance for our educa-
tional chatbot. Despite these advantages, finetuning
is necessary to adapt the model to specific educa-
tional contexts and user needs.

Methods like Self-Supervised Fine-Tuning
(SFT) and DPO are crucial for task-specific ad-
justments. SFT improves model performance by
fine-tuning on specific datasets (Jiang et al., 2024).
DPO enhances response accuracy and relevance
by aligning model outputs with user preferences
(Kim et al., 2023). Our project uses DPO to better
address students’ nuanced needs, setting it apart
from generic fine-tuning approaches.

RAG enhances response quality by dynamically
accessing external knowledge. RAG’s effective-
ness across various tasks has been demonstrated
(Lewis et al., 2020), showing significant improve-
ments in accuracy and contextual relevance. Inte-
grating RAG ensures our chatbot provides more
relevant and informative responses, which is criti-



cal for educational utility.

Prompt engineering techniques like chain-of-
thought prompting and few-shot learning also
improve model performance. Chain-of-thought
prompting (Wei et al., 2022) helps generate logical
responses by breaking down tasks into steps, while
few-shot learning (Brown et al., 2020) enhances
adaptability and accuracy with minimal examples.
Prompt engineering is used to create preference
data for training and to develop the best prompts.

By building on these advanced models, the goal
of our project is to enhance educational chatbot ca-
pabilities demonstrating the benefits of integrating
advanced optimization and retrieval methods.

3 Approach

The first critical decision to make is the choice of
the model to be used. We needed a model that bal-
ances the number of parameters with strong capabil-
ities in reasoning, question answering, and summa-
rization which are the key features that should be
leveraged by an educational chatbot. We selected
the Unsloth/Gemma-7b-bnb-4bit model (unsloth,
2023), a quantized version of the Gemma 7B model.
The Gemma 7B model (Google, 2024) is a text-to-
text, decoder-only large language model (LLM)
pretrained using Google’s web dataset, which is
known for its high performance in these tasks out-
performing other models of similar size (kagglepro,
2024) such as Llama 2 (Meta, 2023) and Mistral
(Al 2024). However, with its 7 billion parameters,
it demands substantial computational resources.
Quantization in the Unsloth model reduces the
precision of the model parameters, decreasing the
model size and increasing inference speed without
a significant loss in performance. To further re-
duce the number of parameters, we utilize LoRA,
which modifies only a small subset of the param-
eters, enabling efficient finetuning. Consequently,
the model trains with approximately 50 million
parameters using a sigmoid loss function.

3.1 Model Finetuning

Given the model’s high computational require-
ments, we employed the Tesla V100-PCIE-32GB
GPU available from the IZAR SCITAS cluster to
fine-tune it and align it with our specific educa-
tional context. We implemented two main strate-
gies for this fine-tuning process: (1) SFT followed
by DPO finetuning, (2) DPO-only finetuning. The
goal is to maximize both the margin (difference

between the preferred and non-preferred scores)
and accuracy of the model responses.
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3.2 Preference dataset generation

To train these models, a preference dataset is cre-
ated by EPFL Master students in the context of the
Modern NLP course. Each student has been given
100 exam questions from various EPFL courses in
the following domains: computer science theory,
computer software, computer systems, electrical
engineering, theoretical physics, artificial intelli-
gence, and machine learning. They were asked
to use GPT API to create 2 different answers and
choose the best one. To ensure a highly useful
dataset, both answers should be correct and pro-
viding an acceptable explanation, thus offering a
concrete choice to the annotator. We thought of var-
ious techniques, including Chain-of-Thought (CoT)
prompting and few-shot learning, to enhance the
model’s adaptability for generating high-quality re-
sponses. In the end, we chose to standardize the
prompts with the following instruction: "You are
an educational assistant. We will present various
questions, and we want you to briefly and then
provide an explanation of the final result.”. Then,
the question is presented, and if it is a MCQ, the
possible answers are listed alongside the prompt:
"Select one (or more) answer(s):". To generate the
first answer, we add, the task 7 = "Give only the
number(s) of the correct answer(s).” To generate
the second answer, we instruct, "Analyze the ques-
tion carefully: Let’s think step by step:". We then
take this answer, add it to the initial prompt as a
hint, and finally provide the task 7.

3.3 RAG pipeline

In the pipeline illustrated in Figure 1, we employ
the Recursive Character Text Splitter to divide doc-
uments into sections, with each section contain-
ing 500 characters and overlapping by 25 char-
acters. This approach is favored over splitting
the text evenly to avoid dividing information be-
tween two chunks. To create embeddings, we use
the llama_index embeddings provided by Hugging
Face, specifically employing the BAAI/bge-small-
en-v1.5 (of Artificial Intelligence, 2023) model.
This particular model is chosen due to its excep-
tional ability to generate high-quality embeddings
for our document segments. The created embed-



dings are subsequently saved in the Chroma DB
database (Team, 2023). Chroma DB is selected
for its ability to effectively manage and retrieve
high-dimensional embeddings, making it easier to
quickly retrieve relevant chunkcs during inference.
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Figure 1: RAG pipeline

3.4 From Sentences to a Single Letter and
RAG Integration

Our model has been trained on long sentences that
contain both the answer (not always accompanied
by the corresponding letter) and an explanation.
The challenge is to make it select a single letter
without losing the knowledge acquired during train-
ing. Using Chain of Thought (CoT), the model first
generates an answer with a brief explanation. This
initial prompt, concatenated with the acquired an-
swer, forms the basis for the second prompt, where
the model is constrained to respond with a single
token. For effective prompting, we need two com-
ponents: Verbalizer that matches a word to each
label and a Template to incorporate the review with
one masked token predicting one of the verbaliz-
ers. The success of this method depends on testing
various templates and verbalizers to find the most
efficient configuration.

Figure 2 illustrates the inference pipeline cou-
pled with the RAG pipeline: The process starts
with embedding the question using LLamalndex
Embedding, and storing it in Chroma DB. The re-
triever fetches the most relevant context, combined
with the initial question in CoT Prompt 1. Gemma
processes this to generate a CoT Response, which
is then fed back into Gemma to produce the final
MCQ response using the Template. Finally, we use
the Verbalizer to extract the correct letter.

To assess the performance of our model, the
MMLU benchmark from which only subjects rel-
evant to STEM are kept is performed on different
baselines and our model to identify the improve-

Chroma

DB
Verbalizer ~— ————>|

LLamalndex Retriever Gemma
dding

! I

Retrieved o
Context Template —> o POMRY , «———— CoTResponse

! I |

. Prompt
Question  —>
uesti Constructor] —————— CoTPromptl —————  Gemma

Figure 2: Inference Workflow with RAG integration

ment that we provided.

4 Experiments
4.1 Data

In this section, we discuss the datasets utilized for
refining and assessing our model, along with their
sources and the specific preprocessing steps applied
to guarantee quality and relevance.

4.1.1 Argilla Ultrafeedback-binarized-
preferences-cleaned dataset (Bartolome
et al., 2023) for fine-tuning

This dataset is an enhanced version of the
"Argilla/UltraFeedback-Binarized-Preferences"

dataset (Cui et al., 2023), it comprises 60,917
samples consisting of instructions in various
domains, half of which are scientific. While this
dataset is initially intended for DPO tasks, we use
it for SFT training since we already have ample
DPO training data. For each sample, we structure
the question as a prompt and the chosen response
as the target output. Given the considerable
training time, we utilize only 50% of this dataset.

4.1.2 M1 DPO Preference Data for DPO

As explained before, it was generated by EPFL
Master students in the context of the Modern NLP
course. It consists of 26,738 samples with 1,522
unique questions. To ensure data quality and clear
preferences, we implement a rigorous cleaning pro-
cess: We select responses where the preferred op-
tion has an advantage, defined as the winning op-
tion occurring at least twice as frequently as the
losing option. This process aims to enhance the
training data quality. We further filter the dataset
to include prompts with a length lower than 500
tokens and chosen/rejected responses with a length
lower than 750 tokens each. This results in 21,917
samples, sacrificing around 18% of the original
dataset for improved quality.



4.1.3 RAG Documents

Choosing the right documents is crucial for improv-
ing our model’s ability to answer university-level
questions. We employ a variety of techniques to
develop a comprehensive and suitable compilation
of documents as shown in Figure 3.

M1 DPO Preference Data

|

Subject Question
Chat GPT-40 RAKE Algorithm

|
—
|

Text extractor Wikipedia API

| |

RAG Documents

Figure 3: Extracting RAG Documents pipeline

Books for Specific Subjects We search and
download several open-source textbooks for each
course subject. These books cover a wide range of
topics in all areas, offering a diverse and extensive
knowledge base. The list of these books can be
found in the appendix.

Generate Wikipedia Content Based on Key-
words OpenAl’s GPT-4o is used to create around
100 keywords for every topic in the M1 DPO Pref-
erence Data related to DPO. Specialized terms such
as "lemma," "algorithm," and "formula," specific to
different areas of study, comprised the list of key-
words. We access information from the relevant
pages on Wikipedia’s API by using these search
terms. This process produced approximately 700
keywords with their Wikipedia page content.

RAKE content based on M1 Preference Data
questions We utilize a collection of 1,522 distinct
questions from the M1 dataset. We employ the
RAKE (Rapid Automatic Keyword Extraction) al-
gorithm to determine the most important keywords
from these inquiries. RAKE operates by detecting
word associations in the text, evaluating the fre-
quency of words appearing together, and deciding
on the most important words in the question. This
approach yielded 695 unique summary containing
around 25 words.

4.14 MMLU dataset (Hendrycks et al., 2020)
for MCQA and final model evaluation

This dataset comprises MCQs from 57 academic
domains. We select the 22 most relevant ones for

our project and we format the samples in order to
follow the expected format: "subject”, "question”
which also includes the 4 options, and "answer"
which is a single letter from A to D. This gives us a
subset of 3,967 samples. This dataset is be used as
a benchmark to evaluate the performances of our

model with and without RAG.

4.2 Evaluation method

4.2.1 Generator Model evaluation

We employ a quantitative analysis for evaluating
our Direct Preference Optimization (DPO) model,
focusing on two main tasks: reward computation
for preference pairs and multiple-choice question
answering (MCQA).For reward computation, we
evaluate the model by calculating log probabili-
ties of chosen and rejected responses using policy
and reference models, then checking if chosen re-
sponses get higher rewards. For MCQA, we assess
accuracy by comparing model predictions to cor-
rect answers in the MMLU dataset, overall and by
subject. In addition to quantitative analysis, we
conduct a qualitative analysis to evaluate the rele-
vance of the model’s answers. We use a sample of
100 questions to analyze the contextual relevance
of the responses. Despite some answers being in-
correct (i.e., the model selected the wrong letter),
we found that most responses were correct.

4.2.2 RAG Specialization Evaluation

The performance of the RAG model is evaluated
based on two criteria: retrieval quality and gener-
ated response accuracy. For retrieval quality, we
utilize our retrieval pipeline to fetch relevant doc-
ument chunks for each question. These retrieved
document chunks are then assessed for relevance
through human evaluation using a sample dataset of
100 questions. For generated response accuracy, we
assess the model’s accuracy on the MMLU dataset.
The evaluation involves generating responses using
the RAG-enhanced model and comparing them to
the responses generated without RAG to determine
the effectiveness of the RAG integration.

4.3 Baselines

We compare our model to its baseline version with-
out any further fine-tuning "unsloth/gemma-7b-
bnb-4bit", as well as to other baseline models with
equivalent size that are "unsloth/llama-2-7b-bnb-
4bit" and "unsloth/mistral-7b-v0.2-bnb-4bit", the
quantized versions of Llama 2 7B (Meta, 2023) and
Mistral 7B (Al, 2024) respectively.



4.4 Experimental details
4.4.1 Model finetuning:

Our experimental strategy involves two main ap-
proaches: (1) DPO-only finetuning and (2) SFT
followed by DPO finetuning. We have trained nu-
merous models with various configurations to ex-
tensively examine how different hyperparameter
settings impact model performance.

* SFT: learning rate [r and warmup steps w

* DPO: learning rate and 3, which controls
the trade-off between preference alignment
and response accuracy to identify the optimal
setting that maximizes both the margin and
accuracy of the model responses.

For SFT, we tried with Ir = le™3, w = 5 and
Ir = 5e~4, w = 50, and the training was con-
ducted for one epoch taking, as inputs and labels,
the prompts and chosen responses from half of the
Argilla dataset respectively.

For DPO, we experimented with multiple val-
ues of 5 (0.1, 0.15,0.2, 0.5, 0.8) and Ir (le~" and
1e~5) starting either from the base model that we
have chosen or the first SFT model we got previ-
ously or the second one. Each DPO training session
was run for one epoch due to the repetitive nature
of the questions and the extensive training time re-
quired. Due to the extensive training duration of
about 9 hours on the EPFL SCITAS cluster and
to the high numbers of trainings we planned to
identify the best parameters, we decided, at first,
to train only on the M1 dataset, which we found
to be quite large. Then, when we found a food
set of hyperparameters (3 = 0.8 and I = 1e~%),
we significantly augmented the data by adding the
whole Argilla dataset.

4.4.2 RAG pipeline

For the RAG pipeline, we initially implemented a
system using sentence transformers such as SBERT
(Reimers and Gurevych, 2019) or DistilBERT
(Sanh et al., 2019) to generate embeddings and
store them in the FAISS database (Johnson et al.,
2017). Our goal was to try various embedding mod-
els like DistilBERT, SBERT, ALBERT (Lan et al.,
2019), and GloVe (Pennington et al., 2014). How-
ever, the FAISS database sorting took too much
time, preventing us from testing many hyperparam-
eters like chunk size. To improve efficiency, we
switched to using Llamalndex for vector storage
with ChromaDB (Team, 2023) and selected the

embedding model BAAI/bge-small-en-v1.5 (of Ar-
tificial Intelligence, 2023). We experimented with
different chunk sizes: 100, 200, 300, and 500.

4.4.3 From sentence to a single letter

After training our model to return sentences, we
aimed to refine it to return only a single letter. We
explored multiple approaches to achieve this goal.

First, we experimented with generating tokens
(trying values between 5 and 50). We, then, com-
pared the generated response to each proposed op-
tion using BERTScore, BLEU Score and Fuzzy-
Wuzzy, which calculates the similarity between two
strings based on the Levenshtein distance. How-
ever, the similarities were always too close because
the options were too short.

Second, we attempted parsing. We explicitly
instructed the model to return a unique letter cor-
responding to the correct solution, trying differ-
ent token lengths from 1 to 20. After processing
the response to remove special tokens and new-
line characters, we extracted the first token. If it
was either A, B, C, or D, the result was acceptable.
Otherwise, we extracted the words until the first
newline character and used FuzzyWuzzy to com-
pare with the proposed options. To further refine
the model, we fine-tuned it on the ARC dataset,
which uses unique letter labels. This aimed to help
the model returning a single letter without losing
the knowledge but, unfortunately, it did not lead to
any improvement.

Both methods mentioned above were also tested
using few-shot learning. We provided questions
inspired by the M1 dataset, generated by GPT-4o.
The idea was to match the MMLU-Benchmark,
where the Gemma model is said to achieve the best
score with 5-shots. But this was not conclusive.

Finally, we experimented CoT. We, first, let the
model answer freely with a brief explanation of
up to 80 tokens and, then, take the initial prompt
concatenated with the previously acquired answer.
The model is only allowed to answer to the second
prompt with a single token. To guide it towards the
correct path, the final sentence in the prompt is p =
"The correct answer from A, B, C, D is <strong>
[MASK] </strong>". The idea is for the model
to replace the mask with a single letter. We ex-
tract the logits of some target tokens from which
we can deduce the predicted letter. This turned
out to be a challenging prompt engineering task in
order to find the most efficient prompt. We tried
to find the best prompt to put before the question



and after the option. This task has been tried in
different ways all finishing with "let’s think step
by step” to make it provide a good hint. The latter
is, then, concatenated to the previous prompt after
replacing the final task with p. Upon examining
the most probable tokens, we found that the model
often returned the letter within a token containing
an underscore or in lowercase. To address this, we
calculated the logits for different possible forms
of the letters (e.g., for A, we considered A, a, _a,
_A). We, then, summed the probabilities over these
logits. This technique allowed us to identify the
correct letter with greater accuracy. We also tried
using the maximum probability and adding a sim-
ilarity score with the proposed options, but these
approaches were not conclusive.

4.5 Results

4.5.1 Model finetuning

Due to lack of space and for sake of clarity, we
cannot show all the plots that we acquired during
the training of the different models. However, we
present below two graphs comparing the evolution,
for the validation dataset of the accuracy, which
indicates the percentage of correct preferences, and
the margin, which measures the confidence of the
model in preferring one response over another. In
these graphs, only the plots of the models that per-
formed best in each finetuning method are given.
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Figure 4: Accuracy comparison
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Figure 5: Margin comparison

The results show a clear superiority of the model
that finetunes the base model directly by apply-
ing dpo to the large dataset consisting of the M1
preference dataset and the whole argilla dataset.
Therefore, this model is chosen as our final model
and will be compared with the baselines.

4.5.2 Preference dataset generation

Upon evaluating the answers we got from both
strategies we tried, we found that, surprisingly, the
second method implementing CoT provided less in-
teresting answers compared to the standard method.
This can be explained by the fact that it adds noise
to the question. If the initial answer is incorrect,
there’s a very small chance of recovery and even
if the hint is good, it might introduce additional
information that confuses the model and leads to
an incorrect answer

4.5.3 Rag Retrieval quality

The retrieval quality has been controlled by us look-
ing into a subset of approximately 100 questions.
The vast majority seems to be relevant to the query
providing valuable information that can help to
answer the question. An example is provided in
appendix.

4.5.4 Comparison with baselines:

In the following table, we detail the performance of
different models (Edu being our final model) using
the MMLU Benchmark. We only kept the subjects
in relation with STEM for the final MMLU dataset.
We, also, give their performances over key subjects
that are the ones targeted by our chatbot.

Subject| - Edu| Gemma| Mistral| Llama2
Algebra | base| 34 | 34 24 21
rag | 36 | 30 28 23
CS base| 48 | 47 46 24
rag | 42 | 42 32 23
Math base| 29 | 28 25 20
rag | 32 | 28 30 23
Physics | base| 40.2| 34,3 34,3 20.5
rag | 41.2| 31.4 24.5 21.5
Comp | base| 53 | 52 57 30
Security| rag | 54 | 47 53 29
EE base| 54.5| 54.4 40 24
rag | 51.7| 46.2 39,3 24
MMLU | base| 47 | 37.5 38.8 37.5
rag | 44.4| 36.4 36 35.2

Table 1: Performance Metrics



5 Analysis

5.1 Model finetuning

Two interesting points can be noted in this section:

Comparison between the 2 strategies: Compar-
ing the best-performing DPO-only model with the
best-performing SFT + DPO model that have been
both trained on the M1 preference dataset with
B = 0.8, we observed that the DPO-only model
outperformed the SFT + DPO model in terms of
both accuracy (0.683 vs 0.671) and margin (0.76
vs 0.65). This suggests that, unexpectedly, the
SFT phase might not contribute positively to the
model’s performance and could potentially hinder
it. According to some sources (DeepMind, 2023),
the best DPO model is not necessarily achieved
with the best SFT model. A possible reason for our
unexpected result is that the SFT was trained with
hyperparameters that do not suit the subsequent
DPO training. Due to time constraints, we could
not try different configurations to optimize the SFT.

Comparison between 2 models with the
same parameters but different datasets The
DPO model trained with the additional Argilla
dataset, which is significantly larger than the
dataset we used before, showed improved per-
formance. This is rational for 2 reasons. First,
our model is rather complex, so it needs to be
trained on a substantial dataset to achieve optimal
performance. This finding aligns with the concept
of scale laws in large language models (LLMs),
which suggest that model performance improves
predictably with an increase in the size of the
training data and the number of model parameters.
Second, we notice that for the models trained on
the M1 dataset quickly reached their peak perfor-
mance, after which further training did not lead to
improvements regardless of the learning rate. This
observation suggests that, apart from the scale law,
the M1 dataset quality might not be sufficient to
drive significant improvements. We can conclude
that asking students, who are not experts in all
the proposed domains, to generate a preference
dataset leads to a very noisy dataset. This noise
likely hindered the training of our model, making
it difficult to achieve optimal performance. The
inconsistency and potential inaccuracies in the
preference data could have contributed to the
observed performance limitations.

5.2 RAG system

Our analysis of the Retrieval-Augmented Genera-
tion (RAG) system revealed key insights into its
performance and optimization. Testing with dif-
ferent numbers of chunks (1, 2, and 3) on a test
dataset from the MMLU dataset across various sub-
jects, we found that the top 3 chunks were relevant
for over 90% of the queries. This indicates the
system’s effectiveness in fetching pertinent context,
with a chunk size of 500 characters offering an opti-
mal balance between relevance and computational
efficiency.

Qualitative analysis confirmed the retrieval pro-
cess did not bottleneck inference. We observed
significant performance variations with different
prompt phrasings. The prompt "Given the con-
text information and not prior knowledge, answer
the query" produced contextually relevant but of-
ten general responses. Conversely, "Context in-
formation is below" prompted the model to effec-
tively use the provided context and its prior knowl-
edge, resulting in more precise answers. Chain-
of-Thought (CoT) prompting was also crucial for
maintaining accuracy.

5.3 Analyzing the table of performances

Noteworthy aspects emerge while reviewing the
table 1.

Comparison with baselines: Our model Gem-
maEdu clearly stands out as itl consistently out-
performs the other models (Gemma, Mistral, and
Llama?2) across all the categories. This demon-
strates the effectiveness of our model’s training
and signifies a substantial improvement in perfor-
mance.

Impact of RAG: Focusing on our Edu model, it
is worth noting that the RAG setting does not al-
ways lead to improved performance compared to
the base setting. In fact, in the overall MMLU,
the RAG setting results in lower accuracy, which
may suggest that the chunks provided are not as
helpful as expected, despite the human evaluation
performed. However, upon closer examination, we
can see that the RAG setting outperforms the base
setting in most categories, with the exception of
CS. This exception can be attributed to the fact that
our model was primarily trained on CS data, and
the additional context provided in the RAG setting
may introduce noise that negatively impacts the
model’s performance. Therefore, we can observe a
Simpson’s paradox in this case, where the overall



trend does not necessarily reflect the trends in indi-
vidual categories. This highlights the importance
of considering both the overall performance and
the performance in specific categories when evalu-
ating our model.

Analyzing performance: While our Edu model
outperforms the other models, it is important to
acknowledge that the overall accuracy of 47% in
the MMLU dataset, although better than random,
still leaves room for improvement. Interestingly,
human evaluation conducted by our team reveals
that the hints provided to the model often contain
the correct answer, indicating that the model has ef-
fectively gained knowledge. However, the require-
ment for the model to return only a single letter as
the answer appears to hinder its performance. This
limitation could be attributed to either the prompt
provided to the model or the model itself, as it has
not been specifically trained to return a single letter
as an answer. Our attempts to fine-tune the model
on the ARC dataset to improve its ability to return
a single letter did not result in any significant per-
formance improvements which suggest possible
improvements in the prompt especially that we are
far from the value given in the Huggingface docu-
mentation suggesting an accuracy of 64.3% for the
original Gemma-7b model.

6 Ethical considerations

To adapt our model for high-resource languages
(e.g., French, German), we could finetune it
on large multilingual datasets, leveraging cross-
lingual embeddings and domain-specific data. For
low-resource languages (e.g., Urdu, Swahili), we
could apply transfer learning from high-resource
languages, use data augmentation techniques like
back-translation and data synthesis, and employ un-
supervised or semi-supervised learning with large
amounts of unlabeled text. We should also ensure
that our RAG setup includes a diverse multilingual
knowledge base and supports multilingual retrieval
mechanisms.

To adapt our model for interaction with users
in signed languages, we can collect and prepro-
cess datasets of signed language videos with cor-
responding MCQ content and answers. We can
use computer vision techniques for sign language
recognition and pose estimation, and develop 3D
avatars or generative models for sign language
video synthesis. The model can be trained to trans-
late text-based MCQs into sign language and recog-

nize signed responses. We can integrate real-time
sign language translation and interactive interfaces
supporting video input. Feedback from the Deaf
community are essential to ensure accuracy and
cultural sensitivity.

If our model functions as intended, students ma-
joring in scientific fields will benefit most, as the
Al chatbot will provide accurate answers to Multi-
ple Choice Questions in these subjects. However,
if misused, it can cause harm to both students and
teachers. For example, the chatbot might deliver
incorrect information, assuming that a correct an-
swer is always present among the provided options.
Additionally, if prompted with malicious questions,
it could leak sensitive information, compromising
the privacy of dataset authors. The chatbot also
poses risks if used for harmful purposes.

Vulnerable and marginalized individuals are es-
pecially at risk from such misuse, as they may feel
safer talking to a chatbot than to people in real life.
To minimize these risks, our model can be further
fine-tuned using DPO to detect potentially harmful
inquiries and respond in a safe manner.

Finally, note that our model and datasets cannot
be publicly published because some documents
used for RAG extension are protected by copyright
law. Written permission is required for any future
publication of our work.

7 Conclusion

In this project, we successfully developed an ad-
vanced educational assistant chatbot using the quan-
tized Gemma 7B model. Our primary findings
include learning how to fine-tune large language
models (LLMs) using Self-Supervised Fine-Tuning
(SFT) and Direct Preference Optimization (DPO)
and effectively implementing them. Additionally,
we incorporated Retrieval-Augmented Generation
(RAG) and improved prompt engineering tech-
niques to boost the model’s effectiveness and ob-
tain the desired outputs. Our results demonstrate
that our fine-tuned model consistently outperforms
baseline models, indicating significant improve-
ments in accuracy and relevance. However, we
faced limitations such as not achieving the expected
benchmark performance, possibly due to not test-
ing over the entire MMLU dataset and focusing on
specific subjects. For future work, we with extend-
ing the RAG database, incorporating more docu-
ments, and exploring advanced prompt engineering
techniques to further enhance response quality.
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A Appendix

Al

A2

Contributions

Salim Boussofara: M1 Preference data collec-
tion, model finetuning with different configu-
rations, letter extraction, report writing.

Oussama Gabouj: M1 Preference data collec-
tion, RAG documents, RAG pipeline, prompt
engineering, report writing.

Yasmine Chaker: M1 Preference data collec-
tion, additional data collection, data prepro-
cessing, RAG documents, evaluation, report
writing.

Books for RAG

A.2.1 Artificial Intelligence and Machine

Learning books

. Machine Learning by Tom M. Mitchell | 1997

| McGraw-Hill Science/Engineering/Math

. Explorations in Artificial Intelligence and Ma-

chine Learning | CRC Press

. Artificial Intelligence: A Modern Approach

by Stuart Russell and Peter Norvig | 2021 |
Pearson

. Introduction to Machine Learning by Alex

Smola and S.V.N. Vishwanathan [ 2012 | Cam-
bridge University Press

. Artificial Intelligence: Machine Learning and

Deep Learning by Oswald Campesato | 2020 |
Mercury Learning and Information

. Mathematics for Machine Learning by Marc

Pete Deisenroth, A. Aldo Faisal and Cheng
Soon Ong

A.2.2 Computer Science Theory books

1.

2.

3.

Theory of Computation Lecture Notes- Sub-
ject Code: BCS-303 | Bachelor of Technology
in Computer Science and Engineering & In-
formation Technology

Theory of Computer Science: Reductions by
Gabriele Roger | 2021 University of Basel

The Role of Theory in Computer Science by
John E. Savage

A.2.3 Computer Software books
1. Chapter 4: Computer Software by Dr. Rah-

man Ali | University of Peshawar

2. Introduction to Computer Software by BAS-

NAYAKA W.B.M.C.M. | SUBJECT CODE:
HNDAT1105

A.2.4 Computer Systems books
1. Computer System Architecture, Third Edition

by M. Morris Mano | International Edition

. Introduction to Computing Systems: From

Bits & Gates to C/C++ & Beyond by Yale
N. Patt, Sanjay J. Patel

. BCA-121 Computer Fundamental

. Computer Systems: A Programmer’s Per-

spective, Third Global Edition by Randal
E. Bryant, Carnegie David R. O’Hallaron,
Carnegie | Mellon University

A.2.5 Electrical Engineering books

1. Electrical Engineer’s Reference Book, Six-

teenth edition by M. A. Laughton CEng., D. J.
Warne CEng., | FIEE

. The Electrical Engineering Handbook by Wai-

Kai Chen

. Introduction to Electrical Engineering by Mu-

lukutla S. Sarma | Oxford University Press

. Handbook of Electrical Engineering for Prac-

titioners in the Oil, Gas and Petrochemical
Industry by Alan L. Sheldrake | Consulting
Electrical Engineer, Bangalore, India

A.2.6 Theoretical Physics books
1. Basic Theoretical Physics by Uwe Krey, An-

thony Owen | Springer

2. 100 Years of Fundamental Theoretical

Physics in the Palm of Your Hand: Integrated
Technical Treatment by B. Manoukian

3. Theoretical Physics 6: Quantum Mechanics -

Basics by Wolfgang Nolting

4. Theoretical Physics 1: Classical Mechanics

by Wolfgang Nolting

A.2.7 Abstract Algebra book
1. Abstract Algebra Theory and Applications

by Thomas W.Judson and Stephen F. |Austin
State University



A.3 Finetuning evaluation A.3.3 SFT DPO Finetuning evaluation with
A.3.1 DPO Finetuning evaluation Ir=2e—4,w=5

eval/rewards/accuracies eval/rewards/accuracies
dpo_beta_0.8 — dpo_beta_0.5 — dpo_beta_0.1 — dpo_beta_0.2 — cleaned_sft_2e-4_beta_0.8_Ir_5e-6
dpo_beta_0.15 v cleaned_sft_2e-4_dpo_model_beta_0.3
— sft_2e-4_DPO_beta_0.1_clean_lr=1e-06
068 — sft_2e-4_beta_0.05_Ir_le-7 M
. 0.68
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Figure 6: DPO Accuracy evaluation Figure 10: SFT + DPO Accuracy evaluation

eval/rewards/margins

dpo_beta_0.8 = dpo_beta_0.5 = dpo_beta_0.1 dpo_beta_0.2 eval/rewards/margins
dpo_beta_0.15 v — cleaned_sft_2e-4_beta_0.8_lr_5e-6 2
cleaned_sft_2e-4_dpo_model_beta_0.3
= sft_2e-4_DPO_beta_0.1_clean_lr=1e-06
= sft_2e-4_beta_0.05_Ir_le-7 v
0.6
0.6
0.4
0.4
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o train/global_step

train/global_step
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Figure 7: DPO Margin evaluation Figure 11: SFT + DPO Margin evaluationn

A.3.2 SFT DPO Finetuning evaluation with
Ir=1e—3,w =50 A.3.4 SFT DPO Finetuning overall evaluation

eval/rewards/accuracies

le-3_beta_0.5_Ir_le-6 = sft_le-3_beta_0.3_Ir_le-6
— sft_beta_0.15_Ir_le-06 = sft_le-3_beta_0.1_Ir_le-6

. eval/rewards/accuracies
— sft_2e-4_beta_0.8_lr_Se-6

= sft_le-3_beta_0.2_Ir_5e-6 v — sft_2e-4_DPO_beta_0.1_lr=1e-06 = sft_le-3_beta_0.3_Ir_le-6
— sft_DPO_beta_0.15_lr=1e-06 = sft_le-3_beta_0.1_Ir_le-6
0.68 — sft_le-3_beta_0.2_Ir_5e-6 = sft_2e-4_beta_0.05_Ir_le-7 v
0.68
0.66
0.66
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train/global_step
0.6
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Figure 8: Accuracy comparison Figure 12: Accuracy comparison

eval/rewards/margins eval/rewards/margins
cleaned_sft_le-3_beta_0.5_Ir_le-6 — sft_2e-4_beta_0.8_lr_5e-6 — sft bet 1
- = sft_2e-4_DPO_beta_0.1_lr=1e-06 = sft_le-3_beta_0.3_Ir_le-6
hee gl e fuithen () cleaned — Sft_DPO_beta_0.15_lr=1e-06 — sft_le-3_beta_0.1_lr_le-6
— cleaned sft_le-3 beta 0.1 Ir le-6 v — sft_le-3_beta_0.2_lr_Se-6 — sft_2e-4_beta_0.05_lr_le-7 <~
0.5 06
0.4
0.4
03
0.2
0.2
0.1
train/global_step
0 0
500 1k 1.5k % 500 1k 1.5k 2k

Figure 9: Margin comparison Figure 13: Margin comparison



A.4 RAG retrieval example

Query:

Question: Suppose that a certain software product
has a mean time between failures of 10,000 hours
and has a mean time to repair of 20 hours. If
the product is used by 100 customers, what is its
availability?

Options: A. 80% B. 90% C. 98% D. 99.80%
Retrieved chunk:

=== Availability === Availability is the fraction
of time during which the system can respond to
requests.



