CS438: NameCoin on Peerster

Rassene M’sadaa
rassene.msadaa@epfl.ch

Ahmed Abdelmalek
ahmed.abdelmalek @epfl.ch

I. EXECUTIVE SUMMARY - 1 PAGE (STRICT)

Project background The Domain Name System (DNS) is
an essential part of the Internet. It converts domain names
that people can read into IP addresses. However, traditional
DNS relies on centralized authorities, which makes it sus-
ceptible to censorship, abuse of authority, and single failure
points. Decentralized DNS systems, particularly those that
utilize blockchain technology, tackle these vulnerabilities by
distributing control across a network of users. This method
improves security, reduces the likelihood of outages, and offers
increased resistance to censorship, resulting in a more resilient
and independent Internet framework.

Project description This project extends the efforts of
Homework 1, which created a gossip-oriented broadcasting
and anti-entropy system for peer synchronization within the
Peerster decentralized protocol. We use the codebase of Ous-
sama as the foundation of the project. Expanding on this, the
project incorporates a blockchain for domain registrations, up-
dates, transfers, and expiration, using a Proof-of-Work (PoW)
method for security. Clients can create, update, or transfer
domains by transmitting transactions to the server, where they
are validated by the transaction and blockchain layers. Finally,
the DNS layer processes client requests for domain resolution.

Main building blocks of the project The initiative com-
prises four primary layers:

Peerster Layer: Enables gossip-based dissemination and
anti-entropy for effective peer synchronization within the
decentralized network.

Blockchain Layer: The Blockchain Layer oversees domain
registration, modifications, transfers, and expiration by em-
ploying a Proof-of-Work (PoW) consensus method for secu-
rity. This layer ensures that all transactions are permanently
documented in blocks, offering a clear and unchangeable
record and guaranteeing the integrity of the domain system.

Transaction Layer: The Transaction Layer verifies and
handles transactions. Verifies elements such as domain own-
ership and transfer of name domains before mining legitimate
transactions on the blockchain, ensuring safe domain activities.

DNS Layer: The DNS Layer connects with clients to resolve
domains. Checks the status of the domain by querying the
blockchain and obtains accurate domain information, ensuring
secure and precise handling of domain requests.

Component descriptions In our design, there are 4 types of
messages. Between Miners: BlockChainMessages containing a

Oussama Gabouj
oussama.gabouj@epfl.ch

new block mined and N previous blocks. Between Miners and
Clients: TransactionMessages broadcasted by a client when
he needs a new transaction, this message will be answered
by TransactionAckMessages when the block containing the
transaction is added in the blockchain. And finally DNSRe-
questMessage and DNSResponseMessage for classic requests
of IP address of a given domain name. For consensus, a miner
always accepts a valid, longer blockchain and replaces blocks
from the point of divergence (resolving forks). If a received
BlockChainMessage sequence is too far ahead, the miner saves
it for later processing. If a new block completes this sequence,
it is processed; otherwise, outdated sequences are ignored.
When no correspondence is found, it indicates an excessively
long fork, which requires determining the optimal number of
blocks per BlockChainMessage.

Implementation summary: We faced various obstacles to
guaranteeing the system’s correctness. Without a Certificate
Authority (CA), we directly associate IPs with public keys,
facilitating secure identity validation. Managing forks posed a
significant challenge, which we addressed by implementing
a mechanism for block addition and rollback that ensured
new chains were validated while invalid ones were eliminated.
Moreover, future blockchain messages that are not associated
with the peer blockchain modifications were handled via an
indexed pool, preventing duplication and enabling efficient
retrieval and validation of branches. Finally, confirmations are
delayed until k blocks are mined. This ensures all miner’s
blockchain converge to the same chain.

Testing and Evaluation Summary Our system underwent
three levels of testing:

1) Unit Tests: We tested individual methods within mod-
ules (BlockChain, Crypto System, DNS, Transactions) to
ensure correct behavior and resistance to edge cases for
each seperate component.

2) Integration Tests: We integrated all functionalities in
these tests by validating the Proof-of-Work mechanism
and ensuring full end-to-end operation for domain tasks
such as registration, updates, expiration, and resolution.
We also assessed the system’s resilience to churn, catch
up and Byzantine attacks.

3) Performance Tests: We evaluated the mining and domain
operation throughput, consensus times with varying node
counts, and network overhead for domain updates to
ensure efficiency.

II. RELATED WORK

The Domain Name System (DNS) serves as the backbone
of the Internet, translating human-readable domain names into
machine-friendly IP addresses. Traditional DNS systems rely
on centralized entities, which introduce critical weaknesses
such as single points of failure and censorship risks.

To address these limitations, decentralized DNS (dDNS)
systems were introduced. In particular, Namecoin [1] pio-
neered the use of blockchain technology for domain regis-
tration and management. By leveraging the blockchain’s de-
centralized ledger, Namecoin eliminates the issues mentioned
above. Google researchers have explored dDNS alternatives,
highlighting their potential benefits and limitations. For ex-
ample, studies such as Blockstack [2] and BlockDNS [3]
highlight the importance of balancing decentralization with
scalability, performance, and security in dDNS networks.

Blockchain technology was first introduced in Bitcoin [4],
which implements a decentralized ledger secured through the
Proof-of-Work (PoW) consensus mechanism. PoW ensures
that miners verify transactions by expending computational
resources, creating a secure and tamper-proof system.

Despite its advantages, blockchain systems face various
security threats. Gervais et al. [S] analyze key vulnerabilities,
including 51% attacks and selfish mining, which threaten
the integrity of PoW networks. Similarly, decentralized DNS
systems are not immune to threats. Zhang et al. [3] discuss
risks associated with domain hijacking and consensus failures
in dDNS networks, emphasizing the need for robust protocols
to mitigate such vulnerabilities.

III. THREAT MODEL

In this design, the attacker aims to disrupt the system
through several methods. In the following, we outline these
threats, their potential impacts, and the protections or limita-
tions of our implementation.

Injecting False Transactions:

o Goal: Inject a fraudulent transaction to gain money or a
DNS name without payment.

o Mitigation: Transactions are secured by authentication
and integrity through cryptographic signatures. Invalid
transactions are rejected by miners.

Disturbing System Behavior:

o Man-in-the-Middle (MITM) Attack:

— For Miners: The attacker impersonates a client or
miner to inject invalid blocks or transactions. This
has no impact, as miners validate blocks and trans-
actions against their blockchain, rejecting invalid ones.
Message integrity and authenticity are ensured through
hashes.

— For Clients: An attacker may intercept and modify
private messages such as transaction acknowledgments
or DNS responses. But as we take a threshold of these
messages to confirm them, our model is resistant.

o Packet Dropping: As they receive messages via broadcast,
dropped packets are recovered through the anti-entropy
protocol.

o Overwhelming the Network:

— Goal: Flood miners with excessive messages to hinder
performance.

— Mitigation: Miners can quickly detect and reject in-
valid blocks in BlockChainMessages. However,
advanced BlockChainMessages may lead to in-
creased memory usage, reducing system efficiency
under sustained attacks.

51% Attack:

e Goal: Control the majority of mining power to manip-
ulate the blockchain, allowing double spending, censor-
ship, or rewriting the transaction history. With majority
control, an attacker could create and propagate fraudulent
blocks that overwrite legitimate transactions and prevent
new transactions or DNS updates from being added to
the blockchain.

o Limitations: Our design assumes that no single entity or
coalition can control more than 50% of the mining power.
However, if this assumption is breached, the system
cannot guarantee integrity.

1V. DESIGN
A. Peer Types and Data Structures

We have two distinct peers and two primary data types:
o Peer Types:
— Miners: Responsible for mining blocks, processing
transactions, and resolving DNS requests.
— Clients: Interact with miners to perform transactions
and DNS queries.

« Primary Data Types:

— UTXOToken includes: Amount (token value), Trans-
action Signature (creating transaction), and IsNew
(boolean flag for new tokens).

— Domain includes: Name (domain name), Expiration
Block (expiry block number), and IPAddress (domain
owner’s IP).

B. Message Types

Our design includes four types of messages:

1) Between Miners: BlockChainMessages contains a
fixed number of blocks. Each block includes: Index,
Previous Hash, TransactionMessages (constant num-
ber), Merkle Root, Nonce, Timestamp, BlockHash, and
Miner IP (proof of mining ownership).

2) Between Miners and Clients:
TransactionMessages include: Type (’name
new”, “name firstupdate”, or “name update”), Domain,

Salted Hash, Salt, Sender IP, Receiver IP, Inputs
(UTXOs to process the transaction), and Outputs
(UTXOs for receiver price, sender change, and miner
fee). TransactionAckMessages include: Type

(of the transaction), Owner IP, and UTXOs (money

received).
3) For DNS Requests (between Miners and Clients):
DNSRequestMessage includes: DomainName and

Owner IP (requester’s IP). DNSResponseMessage
includes: DomainName and Owner IP (or empty if the
domain is available).

C. Miners Workflow

When receiving a DNSRequestMessage Figure 1, The
miner searches for the requested domain in the blockchain.
If the domain is not owned or is expired, an empty DNSRe-
sponseMessage is sent back. However, if the domain is valid
and not expired, the miner retrieves the corresponding IP
address and sends it in the DNSResponseMessage.

Senda
Receive

Senda
D

empty empty

Senda
DNSResponseMessage
with the IP adress

Search the domain in
Fig. 1: When receiving a DNS Request

When receiving a TransactionMessage Figure 2: The new
transaction is verified as shown in Figure 3. Once enough
transactions are received, a block is mined, and a BlockChain-
Message is broadcast. If a new block is received during
mining, the mining process is canceled.

> Receive Transaction <

Send ack transaction
cancelled

—

Broadcast a
BlockChainMessage

Validate
Transaction

Add to transactions
to process

Finished Mining T

Construct block and
mine it

Add new Stop
block mining

Fig. 2: When receiving a transaction

Transactions to Yes
process enough for a

block

When receiving a BlockChainMessage (Figure 4), if the

index of the received blocks is:

« Higher than 2 indexes beyond the last block in the
blockchain, the blocks are added to a pool for future
processing.

« Equal to or older than the last block in the blockchain, the
blocks are discarded.The received blockchain is outdated.

o Otherwise, we detect a fork. We Then identify the most
common recent block in both chains. Then, we cache
the peer’s blockchain and attempt to add the new longest
chain by validating it block by block. If the entire chain
is valid, we adopt the cached blocks and verify that the
transactions match the new longest chain. If they do, we

— Validate Ti

Transactions

New name Name transfer
Type ?

Name
First
Remember this domain Rece
update
received a new domain

Did I receive a ~\No|
new domain
for this domai

Did the domain
expire?

Yes

Is the sender
the owner of
Yes_the domain

No

Verify validity of
the Inputs

Output no

Fig. 3: Validate transaction

proceed. Otherwise, we return the invalid blocks to the
pool. If validation fails, we discard the longest chain and
revert to the peer’s chain.

Receive
BlochChainMessage

Blocks are too
advenced
No

Blocks are my’

index or olde

No

Remove from my block
Chain the ones that differ
Add the new blocks
received

Yes
Add some from the
future pool

Fig. 4: When receiving a BlockChainMessage

Add to the future
blocks pool

Rollback the
blockchain

D. Clients Workflow

1) A client can add a new domain by sending a transaction of
type “new name.” Once the acknowledgment is received,
the client sends a transaction of type “first update.”

2) A client can update a domain they already own after it has
expired by sending a transaction of type “name update.”

3) A client can purchase the domain of another client by
paying through a transaction of type “name transfer.”

4) A client can send a DNS Request to miners, and receive
a DNS Response indicating the IP address of the domain
owner, or empty if the domain is not owned or has
expired.

Here is an example of scenario (Figure 5):

V. IMPLEMENTATION

During our implementation, we encountered multiple issues
that we had to find a solution for.

Client1 Client2 Miner1 Miner2

Transaction, ‘name new’

Transaction, ‘name new

[BN
BlockChainMes:
Ly inMessage stp

Ack ‘name new’

Ack transaction, ‘'name new’

Transaction, first update

Transaction, ‘first update

Stop
Ack first update

Transaction, 'name update

Ack transaction, ‘first update'
uJ

Transaction, 'name update' _ |
—Transaction, name update | 1

Ack transaction, ‘name update' L{ | BlockChalnMessage U stop

Ack transaction, ‘name update

Transaction, 'name transfer

Transaction, ‘name transfer

Ack transaction, ‘name transfer' || | BlockChainMessage

Stop

Ack ‘name transfer

DNS REQUEST
DNS RESPONSE client1

DNS REQUEST

DNS RESPONSE client1

Fig. 5: Scenario

Absence of a CA In our implementation we noticed that
we needed a trusted CA to provide us with the public key
of each peer. Our first choice was to send in the transaction
the full public key of the concerned parties, but we noticed
that after marshaling and unmarshaling the public key was
modified enough so that ”.equal” doesn’t work anymore. We
decided to provide a map to each node in the initialization
with all the IP addresses to the public keys.

Handling Forks in consensus process As it happens that
we receive a blockchain that is ahead of ours, we will have to
take it as our own (Figure 6).

Received

My blockChain

Fig. 6: Solving a fork when a BlockChainMessage is received

Howeyver, this raises three issues:

o If the chain to be added is valid, we must manage the
transactions. The transactions in the blocks removed from
our blockchain must be re-mined, while those from the
received chain must be discarded.

o To verify a block in our implementation, it must first
be added to the blockchain. This means that to verify
the entire received chain, we must temporarily add all
the blocks. However, if the last block fails the validity
check, we must roll back to our original blockchain. To
address this, we’ve implemented a security mechanism
that uses temporary caching, ensuring the real cache is
only updated once the entire chain is validated.

o To ensure that the client only receives transaction ac-
knowledgment once their block is part of the majority
blockchain, the miner will send the acknowledgment only
after K additional blocks have been added. The client will
then confirm the acknowledgment only if it is received
from at least N miners.

Managing the advanced blockChainMessages received
when a miner arrives late and has to catch up a lot of
blockChainMessages and that he has to store them knowing
that there will be a lot of duplicates. We created a type of
pool that is a map from the index to a list of blocks, when we
add a chain to the pool only the non-duplicated blocks will be
added in the good index key. To retrieve them we will have to

Index Blocks

B

=
=]
=]

(] (]
(]
L]
[

M

5
->

3
3
BEEE
o
B
BEE
-]

Fig. 7: Storing and retrieving branches from the pool

choose the longest possible branch from that index and test its
validity, if this branch is not valid, we try the next longest. To
achieve this we did a recurrent algorithm that retrieves from
this pool all the possible branches of blockChain and puts
them in order. Like figure (Figure 7)

VI. TESTING

This section outlines the unit and integration tests conducted
for different components of the system. We focused on im-
plementing unit tests to ensure each function’s correctness
and then we implemented the integration tests to validate the
system’s interaction. Our tests achieved 73.4% coverage, and
an HTML coverage report is available on the CI.

A. Unit Testing

These tests focus on the key features of each layer.

Blockchain Layer The Blockchain layer includes features
related to block creation, hash calculation, and maintaining
the integrity of the chain. We wrote unit tests for the fol-
lowing features: Merkle Tree Creation and Verification, Block
Hash Calculation, Adding and Retrieving Blocks, Fetching the
Latest Block, Proof-of-Work Mechanism and Test the pool of
advanced block Chains

Transaction Layer The Transaction layer is responsible
for handling user transactions, ensuring their validity, and
managing their inclusion in blocks. The unit tests focused on:
Transaction Validation: Tests to verify that each transaction
has the amount of Inputs equal to outputs and that the Inputs
come from a other transaction’s output in the Block Chain and
Transaction Hashing for integrity

Domain Services Layer The Domain Services layer han-
dles the core business logic, including domain transfers and
state transitions. The tests included: Domain Transfer Validity:
Tests to ensure that domain ownership is correctly transferred
and State Transitions: Tests to verify that the clients send the
type of messages in good order.

1) Cryptography Module: The Cryptography module is
essential for securing transactions and data. The unit tests for
this module focused on: Encryption and Decryption, Digital
Signatures, and Hashing Functions.

B. Integration Testing

Integration tests were designed to validate the interaction
between the different layers and ensure that they work together
as expected. The following key scenarios were tested:

Multiple Clients and Miners Handling Transactions:
This test simulates multiple clients submitting new domains
concurrently while miners process these transactions. The goal
is to ensure that all miners maintain consistency by having the
same transactions in their blocks.

Consensus and Block Validation: This test focuses on
ensuring that when new transactions are broadcasted, we have
a valid consensus mechanism by comparing blockchains across
miners to ensure they match and converge.

Persistence of Transactions During Churn: This test
simulates node churn, where some miners disconnect and some
clients ask for the domain. This verifies that no transactions are
lost and that the blockchain is consistent during node drops.

Catch-Up Mechanism: In this test, late-joining miners are
simulated to ensure they can catch up with the latest block .
This validates that all miners, regardless of when they join the
network, can synchronize with the current blockchain state.

VII. EVALUATION

We evaluated the performance of our system using four
distinct tests as follows:

Mining Latency and Throughput The test initializes a
set of miners and clients, simulates domain registrations, and
ensures that after the blockchain stabilizes, all nodes have the
same number of blocks, with the final block being consistent
across all nodes. We extract all blocks, record the mining
duration for each block, and compute the total mining duration,
average block latency, and throughput for different difficulties.

Transaction Latency and Throughput In this test, a
predefined number of nodes are set up, and the number of
clients is varied. Each client generates two transactions, which
are propagated across the network. We ensure that every node
in the network has the expected number of transactions in its
blockchain. Once this condition is met, we record the total
time and compute the average latency and throughput.

Consensus Mining Latency and Throughput The test
configures varying numbers of miners and clients, simulates
domain registration transactions and monitors the time for all
miners to achieve consensus.

Network Overhead, Bandwidth, and Latency In this test,
we vary the number of clients and miners. For each combina-
tion, each client generates two transactions. We compute the
total number of packets sent across the network by all nodes,
categorizing them by message type. Additionally, we calculate
the total data transmitted and bandwidth usage.

Here, we present the results of our performance evaluation.
These results are derived from the performance tests and
extracted from the HTML file generated by the CI system.

Table I summarizes latency data (MB/s) for different
domain and miner configurations. It highlights a general

Domains vs miners 3 4 5 6 7
5 0.14 | 0.15 | 0.04 | 0.10 | O0.16
10 0.11 | 0.10 | 0.08 | 0.07 | 0.25
15 0.09 | 0.12 | 0.10 | 0.03 | 0.79
20 0.09 | 0.30 | 0.32 | 0.32 | 0.37

TABLE I: Latency data for different numbers of domains
increase in latency with higher miner and domain counts due
to increased synchronization complexity.

Throughput vs Difficulty

Throughput vs Number of Miners

Throughput (Transacti
Throughput (Blocks/Second)

Number of Miners

2 4 6 8 10
Difficulty Level

Fig. 8: Image 1
Fig. 9: Image 2

From figure 8, we can see that throughput increases with
the number of miners, peaking at 8 miners, and then declines
slightly, indicating optimal miner configurations. Figure 9:
The throughput decreases significantly with higher mining
difficulty, highlighting the need to balance mining difficulty
(security) and throughput for optimal performance.

These results collectively illustrate key trade-offs and opti-
mal configurations in system performance.

VIII. LIMITATIONS & FUTURE WORK

Creating UTXOs for Clients: To simplify the creation of
initial UTXOs for clients, each UTXO includes a boolean flag
set to t rue if it is newly created. This allows miners to bypass
transaction history verification for these UTXOs, streamlining
testing and implementation. However, this approach is inher-
ently insecure and not suitable for production systems.

Handling Duplicate Domain Names: If two clients attempt
to create a domain with the same name (via a “new name”
transaction) before performing a ”first update,” the miner
cannot detect the conflict. This is because the domain names
are salted and hashed, making them indistinguishable.

Block Consensus Mechanism: Miners achieve
consensus by sending a fixed number of blocks per
BlockChainMessage. If the received blockchain is

longer, the miner adopts it. However, if the fixed number
is insufficient to resolve a long fork, the miner may fail to
update its blockchain. While sending partial blockchains looks
less efficient than transmitting the entire chain, dynamically
adjusting the block count based on bandwidth could improve
efficiency in the long run.

Trusting Clients for Domain Transfers: For domain
transfers, the system trusts the transferring client and does
not require explicit consent from the seller, which could lead
to potential misuse.

(1]
[2]

(3]

[4]
(5]

REFERENCES

“Namecoin: A decentralized naming system,” in Proceedings of
Namecoin. [Online]. Available: https://namecoin.org

M. Ali, J. Nelson, R. Shea, and M. J. Freedman, “Blockstack: A global
naming and storage system secured by blockchains,” in USENIX Annual
Technical Conference, 2015, pp. 181-194. [Online]. Available: https:
/Iwww.usenix.org/conference/atc 1 5/technical-sessions/presentation/ali

J. Zhang, J. Chen, T. Yu, and W. Chen, “Blockdns: A secure and
efficient decentralized dns,” in Proceedings of the IEEE International
Conference on Blockchain, 2018, pp. 1420-1427. [Online]. Available:
https://ieeexplore.ieee.org/document/8451414

S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[Online]. Available: https://bitcoin.org/bitcoin.pdf

A. Gervais, G. O. Karame, H. Wiist, V. Glykantzis, D. Ritzdorf,
and S. Capkun, “On the security and performance of proof of work
blockchains,” in Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security, 2016, pp. 3-16. [Online].
Available: https://dl.acm.org/doi/10.1145/2976749.2978341

