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Introduction

Understanding biological motor control is a major problem facing neuroscience today. The complex

coordination ofmuscles required for tasks ranging from daily activities to athletic achievements demon-

strates the remarkable capabilities of biological systems. Using computer-based tools like muscu-

loskeletal simulators and reinforcement learning (RL) algorithms helps us learn about these processes

and create better artificial motor control systems. Our project is based on the work of Chiappa, Tano,

Patel et al., who introduced a novel curriculum-based RL method for motor control.
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Figure 1. NeurIPS MyoChallenge for balls boading

Their Static to Dynamic Stabilization (SDS) curriculum emulates human learning by teaching an RL

agent to stabilize static configurations before dynamic transitions, improving learning efficiency and

performance. Chiappa et al.’s study suggests that combining physiologically-detailed simulators with

RL algorithms can address complex motor control challenges. They also hypothesized that synergies

can be extracted from artificial agents similar to biological muscles via dimensionality reduction inmotor

control. Understanding dimensionality ofmotor control tasks could lead to more efficient RL algorithms

operating in reduced dimensional spaces, resulting in faster learning and better generalization.

Experimental Environment

The environment used for the experiments is the Myosuite baoding balls task which is a challenging

motor control problem, divided into two distinct phases:

Phase I: focuses on counter-clockwise rotations with fixed task parameters.

Phase II: introduces additional complexities such as clockwise rotations, hold conditions, and

random variations in task parameters like rotation period, ball size, and friction.

The interaction between the control policy and the MuJoCo physics simulator is formulated as a

Partially-Observable Markov Decision Process, represented as M = 〈S, A, O, T, R, γ〉.

Environment variables

State Space (S): The complete set of possible states of the system.

Observation Function (O): Maps state to observation vector (O : S → R86): 23 joint angles, 6

positions - 6 velocities (ball), 6 positions - 6 velocities (targets), 39 previous muscles’ activations.

Action Space (A): 39 muscle-tendon activations controlling human forearm model (A ⊂ R39).

Transition Function (T ): Defines how the environment evolves (T : S × A → S).

Reward Function (R): Associates rewards with state transitions (R : S × A × S → R).

Discount Factor (γ): Balances immediate and future rewards.

Methods

Analyze the components of motor synergies and understand how variance behaves in order to find

ways to distill expert motor strategies and effectively transfer them to novice agents to achieve com-

parable performance in the second phase. The reinforcement algorithm used to train the novice agent

is the recurrent proximal policy optimizationwhich balances exploration and exploitation effectively.

Train an Agent on Phase I using phase II architecture → Baseline: The training starts with the

agent having no prior knowledge, learning solely from rewards received during interactions.

Extract PCs of the Expert Agent from Phase II: PCA is performed on expert agent’s features and
actions from Baoding task (Phase II) to identify key components and underlying motor synergies.

Feature Space: Extract PCs from the last hidden layer and map into a smaller feature space.

Action Space: Extract PCs from the action space (i.e muscle activations space).

Policy Distillation Strategies 2 strategies to explore transition from novice to expert in RL

policies for motor skill: reducing observation mapping space or action space dimensionality.

Policy Distillation Strategies

1- Reduce observationmapping space guiding agent to take best actions. Constrain agent’s exploration

for more efficient learning. Address curse of dimensionality, simplifying observation mapping space.

Reduced observation mapping space:

2- Reduce the action space dimensionality. Constrain the agent’s exploration so that it only explores

the most probable action space derived from the expert agent’s experience.

Action Space Dimensionality Reduction:

Results Analysis

PCAAnalysis:

A suitable number of extracted PCs is 16 in action

space and 40 in feature space, as their cumulative

explained variance is greater than 0.9 and 0.88,

respectively. 16 components are effective in rep-

resenting action spacewith a high level of variance

retention. For the feature space, achieving a cu-

mulative variance of over 0.9 requires adding at

least 10 components, covering only 0.02 of the

variance. 40 components maintain a higher num-

ber of features compared to subsequent layer’s 39

action features, ensuring that PCA doesn’t overly

simplify the feature space prior to its usage in fur-

ther analyses.

PCA-based reconstruction for action

space captures essential patterns effec-

tively, maintaining a coherent visual rep-

resentation of the data after reconstruc-

tion. Despite some loss in detail, the

major variations are well-represented

and key characteristics are preserved.

The smoother transitions in the recon-

structed actions reflect a successful di-

mensionality reduction, simplifying data

while retaining its critical structure.

Evaluation of experiments:

All 4 models were evaluated under stochastic conditions. Mean Reward indicates the average reward

achieved while training. Mean Episode Length measures the duration before failure (balls dropping).

Model Exp 1 Exp 2 Exp 3 Exp4 Expert 2 Baseline

Mean Reward 485 321 41 39 990.4

STD Reward 7.3 7.8 2 2.1 -

Mean Episode Length 121.4 111.3 22.5 21.5 200

STD Episode Length 3.5 4.2 1.5 0.9 -

Table 1. Summary of Neural Network Experiment Results

Experiment 1/2: The first two experiments

demonstrated significantly higher rewards and

episode lengths. Agents were at least able to

maintain control over the task (holding the balls)

for longer periods, which is the initial step of the

curriculum learning SDS according to the founda-

tional project paper, although they struggledwith

more complex manipulations (rotating the balls),

as indicated by skeletal simulations.

Experiment 3/4: Significantly lower rewards and

episode durations in the last two experiments

suggest difficulties in basic task retention (hold-

ing the balls) and the drastic reduction in feature

and action spaces was too severe, omitting nec-

essary information for effective decision-making.

Although exploring the reduced feature space

was a logical step in experiment 4, results sug-

gest that simply spending more time within this

space didn’t compensate for the loss of critical

information due to excessive compression.

Discussion and Conclusion

Evaluating Task-Specific Performance Through PCA

- The reconstruction from reduced spaces maintains basic actions but smooths out intensity of muscle

activation, causing agent to struggle to fully execute all tasks within restricted space. While the agent

learns to hold the balls, a task not requiring fine variations, it fails to rotate the balls, a task demanding

maximal muscle extension. This underscores the role of selecting an appropriate number of PCs.

- Given Experiment 1’s demonstrated capability to achieve a reward of 400 just by holding the balls, we

suggest a potential to sequentially train the model on more complex tasks: ball rotation and baoding.

Optimizing Dimensionality Reduction Strategies for Enhanced Model Training

- The number of PCs was selected to maintain high explained variances. However low-variance PCs

indicate some task-specific features that could be essential for efficient learning. It could, therefore,

be beneficial to find wiser ways to extract the PCs.

- PCAusagemay need reconsideration. Although it is effective for reducing dimensionality by capturing

maximum variance, it might not be the most suitable method for tasks that involve complex, dependent

actions like those our model is trained on. Alternative techniques might be more appropriate.

- Experimenting with re-positioning PCA layer within the NN architecture might yield improvements.

Shifting PCA layer to different points between other layers could potentially optimize agent learning.
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