
Exploring the transition from novice to expert in RL
policies for motor skill

Oussama Gabouj
oussama.gabouj@epfl.ch
Ahmed Aziz Ben Haj Hmida

ahmed.benhajhmida@epfl.ch
Salim Boussofara

salim.boussofara@epfl.ch

Abstract

This study investigates the use of reinforcement learning for motor control, building1

on the curriculum-based RL approach introduced by Chiappa et al [1]. It explores2

the evolution from novice to expert reinforcement learning policies in motor skill3

acquisition, focusing on the manipulation of Baoding balls, which is a task requiring4

complex motor skills. We employ recurrent PPO [2] with LSTM layers to handle5

partial observability. Our study, also, simplifies the learning process by distilling6

complex expert strategies into novice agents using various dimensionality reduction7

techniques involving both static and dynamic reductions of observation and action8

spaces with the aim to find a balance that maintains essential information while9

enhancing learning efficiency. This report provides an overview of the methods10

and insights gained into the effectiveness of dimensionality reduction in training11

RL agents for intricate motor control tasks.12

1 Introduction13

1.1 Context and motivation14

Understanding biological motor control is a major problem facing neuroscience today. The complex15

coordination of muscles required for various tasks ranging from daily activities to athletic achieve-16

ments demonstrates the remarkable capabilities of biological systems. Using computer-based tools17

like musculoskeletal simulators and RL algorithms can help us learn about these processes and create18

better artificial motor control systems.19

1.2 Background20

Our project build on the foundational work achieved by Chiappa et al. [1]. They presented a new way21

of using curriculum-based RL for motor control. Their method, the Static to Dynamic Stabilization22

(SDS) curriculum, won the NeurIPS MyoChallenge for its effectiveness in training a model to23

manipulate Baoding balls, a task requiring complex motor skills. This innovative approach mirrors24

human learning by progressively teaching an RL agent to stabilize static configurations before moving25

on to dynamic transitions, thereby enhancing learning efficiency and performance. The study by26

Chiappa et al. [1] highlights the potential of combining physiologically-detailed simulators with27

powerful RL algorithms to tackle complex motor control challenges.28

An important aspect of their work is to verify the hypothesis that it is possible to extract synergies29

from artificial agents as in biological muscles via dimensionality reduction in motor control. Indeed,30

The human motor system has numerous degrees of freedom, making the control problem highly31
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complex. The SDS curriculum implicitly reduces this complexity by breaking down the learning32

process into manageable stages. However, understanding the intrinsic dimensionality of motor control33

tasks can further enhance learning efficiency. Identifying the key components or synergies that govern34

effective motor control could help to develop more efficient RL algorithms that operate in a reduced35

dimensional space, leading to faster learning and better generalization.36

2 Experimental environment37

The environment used for the experiments is the Myosuite, specifically the baoding balls task which a38

challenging motor control problem, divided into two distinct phases:39

• Phase I: It focuses on counter-clockwise rotations with fixed task parameters.40

• Phase II: It introduces additional complexities such as clockwise rotations, hold conditions,41

and random variations in task parameters like rotation period, ball size, and friction.42

The agent receives a comprehensive set of observations, described by an 86-dimensional observation43

vector, which provides a detailed representation of the system’s state. This vector includes 23 joint44

angles, positions and velocities of the balls, positions and distances of the targets and previous45

activations of the 39 muscles. These observations enable the agent to understand the current state46

and make informed decisions about subsequent actions. Indeed in response to the observations, the47

agent generates actions within a 39-dimensional action space, corresponding to the activations of48

the muscle-tendon units controlling the human forearm model. These actions are influenced by the49

internal state representations formed by the LSTM layers, which accumulate information over time.50

Therefore, the interaction between the control policy and the MuJoCo physics simulator is formulated51

as a Partially-Observable Markov Decision Process, represented as M = ⟨S,A,O, T,R, γ⟩. This52

process comprises the following components:53

• State Space (S): The complete set of possible states of the system.54

• Observation Function (O): Maps the state to an 86-dimensional observation vector (O :55

S → R86).56

• Action Space (A): Represents the possible muscle activations (A ⊂ R39).57

• Transition Function (T ): Defines how the environment evolves (T : S ×A → S).58

• Reward Function (R): Associates rewards with state transitions (R : S ×A× S → R).59

• Discount Factor (γ): Balances immediate and future rewards.60

3 Methodology61

The primary task of our project is to analyze the components of motor synergies and understand how62

variance behaves with the aim to find ways to distill expert motor strategies and effectively transfer63

them to novice agents to achieve comparable performance in the second phase. The reinforcement64

algorithm used to train the novice agent is the recurrent proximal policy optimization which balances65

exploration and exploitation effectively. The PPO configuration includes a recurrent neural network66

architecture with LSTM layer to handle the partial observability of the environment.67

To analyze the motor synergies of the novice and the expert agents, we conducted a series of structured68

experiments.69

3.1 Train an agent on phase I using the architecture used for phase II70

To ensure consistency, we began by training an agent on Phase I of the Baoding balls task using71

the architecture designed for Phase II. The training process starts with the agent having no prior72

knowledge, learning solely from rewards received during interactions. The agent trains in the Phase I73

environment, focusing on counter-clockwise rotations of the Baoding balls over multiple episodes,74

each lasting 200 time steps (5 seconds). Early termination is used if the balls fall below the palm75

to focus learning on productive interactions. The agent’s performance is based on rewards for76

maintaining the balls’ proximity to the target trajectory, with cumulative rewards updating the policy77
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through PPO. Using the advanced Phase II architecture in Phase I training is expected to improve78

learning efficiency and performance, providing a baseline for further analysis.79

3.2 Extract the principal components of the expert agent (Phase II)80

Next, we extracted the PCs from the expert agent trained in Phase II to identify key components81

driving effective performance and understand underlying motor synergies. This step is foundational82

for the subsequent distillation processes, as it highlights the most significant features and actions that83

contribute to successful task execution. PCA is performed on the expert agent’s features and actions84

from Phase II of the Baoding balls task.85

• Feature Space: Extract PCs from the last hidden layer and map into a smaller feature space.86

• Action Space: Extract PCs from the action space (i.e muscles activation’s space) and map87

into a smaller action space.88

Using an analysis of the cumulative explained variance, which we will discuss later in the report,89

we decomposed the high-dimensional feature and action spaces of the expert agent into a small set90

of orthogonal components capturing the most of the variance in the agent’s behavior. This allows91

us to identify the key factors of the expert’s performance, representing motor synergies [3] and92

efficient strategies that can be transferred to novice agents. This understanding helps in reducing the93

dimensionality of observation and action spaces, combining hand movements and simplifying the94

learning process for novice agents.95

3.3 Policy distillation strategies96

To explore the transition from novice to expert in RL policies for motor skill acquisition, we employ97

two primary strategies for policy distillation: reducing the observation mapping space and reducing98

the action space dimensionality.99

3.3.1 Feature space dimensionality reduction100

In the first part, we focus on reducing the observation mapping space to guide the agent in taking the101

best possible actions. By reducing the dimensionality of the observation space, we aim to constrain102

the agent’s exploration, helping it to learn more efficiently. This approach addresses the curse of103

dimensionality by simplifying the complex observation mapping space.104

Static PCA: We project the features of the novice agent into a lower-dimensional space using the105

principal components (PCs) of the observation mapping space derived from the expert agent as106

illustrated in the Figure 1. The PCA layer as indicated by red box is a frozen layer. By reducing the107

feature space to these key components, we create a simplified representation that the novice agent108

can use to learn the task. The agent is, then, trained to take actions given the reduced observation109

mapping space, effectively focusing its learning on the most relevant aspects of the task as determined110

by the expert agent’s experience. The reduced feature space helps limit the exploration of the novice111

agent to the most promising regions.112

Figure 1: Static PCA architecture
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Bottleneck: Instead of using a static PCA, we employ an additional fully connected layer to the policy113

neural network to dynamically learn the best feature mapping before action selection. The Figure 2114

illustrates the architecture of the modified network. It involves adding a bottleneck layer, just before115

the output layer, which forces the network to compress the information into a lower-dimensional116

representation. It should allow the network to adaptively determine the most important features,117

potentially capturing more nuanced relationships than static PCA. This bottleneck architecture serves118

as a baseline for comparison. It allows us to evaluate the effectiveness of PCA-reduced observation119

space from the expert agent against a dynamically learned reduced observation mapping space.120

Figure 2: Bottleneck architecture

3.3.2 Action space dimensionality reduction121

The second approach focuses on directly reducing the action space dimensionality. We aim to122

constrain the agent’s exploration so that it only explores the most probable and relevant action space123

derived from the expert agent’s experience. By reducing the dimensionality of the action space, we124

add constraints to guide the agent’s exploration towards the best possible actions, captured by the PC125

of the expert.126

Projection and Back-Projection: In this strategy, actions are projected into a reduced space formed127

by the PCs that were extracted from the expert. The obtained vectors are, then, projected back to128

the original high-dimensional action space. This process, illustrated in Figure 3, involves splitting129

the projection and back-projection phases to reduce small variations and noise. The idea is that by130

reconstructing from the projected space, the basic actions remain consistent, but the intensity of the131

activated muscles is smoothed, removing small variations. This smoothing effect helps the agent to132

capture the overall behavior more effectively.133

Figure 3: Projection and Back-Projection architecture

Reduced Latent Space Exploration: This approach enforces exploration constraints by projecting134

actions into a reduced latent space, conducting exploration within this space, and then projecting back135

to the original action space. The key difference from the previous method is the focus on latent space,136

which represents a more abstract and potentially more informative reduced space for exploration.137

By operating within this latent space, the agent can explore variations around the high-variance138
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components identified from the expert’s policy. This method ensures that the agent’s exploration139

is primarily within the most critical regions of the action space, promoting efficient learning and140

potentially faster convergence to an optimal policy. This approach is illustrated in Figure 4, where141

the exploration is conducted after PCA and then projected back to ensure the agent focuses on the142

most informative components.

Figure 4: Latent Space Exploration architecture

143

4 Results Analysis144

4.1 PCA Analysis145

After analyzing the figures showcasing the cumulative explained variance by principal components146

in both the action space and feature space, we can conclude that a suitable number of principal147

components (PCs) for each domain can be determined by considering their cumulative contribution148

to the variance. In the action space, a suitable number of PCs to be extracted is 16, as their cumulated149

contribution to the variance is greater than 90%. For the feature space, a suitable number of PCs to150

be extracted is 40, accounting for a substantial 88% of the variance. We can note that achieving a151

cumulative variance of over 0.9 requires adding at least 10 components, covering only 0.02 of the152

variance. Keeping only 40 PCs seems, therefore, to be a good tradeoff.153

By selecting these 16 PCs for the action space and 40 PCs for the feature space, we effectively capture154

the most significant features, enabling proper dimensionality reduction while preserving the essential155

characteristics of both spaces for our analysis.156

(a) Action Space (b) Feature Space

Figure 5: Cumulative explained variance of the PCs

4.2 Experiments157

All four models were evaluated under stochastic conditions. The mean reward indicates the average158

reward that a model achieved throughout training, and it varies within the range specified by the159
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standard deviation STD Reward. Similarly, the mean episode length, which measures the duration160

before failure (e.g., balls dropping) also fluctuates within the range defined by its standard deviation161

STD Episode Length.162

Model Exp 1 Exp 2 Exp 3 Exp4 Expert 2 Baseline
Mean Reward 485 321 41 39 990.4
STD Reward 7.3 7.8 2 2.1 -

Mean Episode Length 121.4 111.3 22.5 21.5 200
STD Episode Length 3.5 4.2 1.5 0.9 -

Table 1: Summary of Neural Network Experiment Results

4.2.1 Feature space dimensionality reduction163

Experiment 1: It involved integrating a PCA layer into the original neural network architecture164

to reduce the feature space from 256 dimensions 40 which is the number of principal components165

(PCs), and then mapping these PCs to the final 39 features. This model achieved a mean reward166

of 485 with a standard deviation of 7.3 indicates that this model performed robustly under varied167

conditions, consistently earning high rewards. The relatively stable mean episode length of 121.4168

with a standard deviation of 3.5 suggests that the model was effective in sustaining performance over169

time before failure occurred. The integration of a PCA layer demonstrated a substantial improvement170

in performance compared to the more complex models in subsequent experiments. This suggests that171

feature reduction at this level of dimensionality effectively balances complexity and performance,172

offering a sweet spot for this specific task.173

Experiment 2: Similar to the first experiment, but replacing the static PCA layer with a fully174

connected layer that dynamically learns the best feature mapping for action selection. The mean175

reward decreased to 321 with a standard deviation of 7.8, and the mean episode length also reduced to176

111.3 with a standard deviation of 4.2. These changes suggest that, while the network was adapting, it177

might have faced challenges in stabilizing its performance, possibly due to the increased complexity178

or overfitting to the training, as the network adjusts the feature representation based on feedback from179

the environment, potentially capturing more complex patterns beneficial for the task.180

4.2.2 Action space dimensionality reduction181

Experiment 3: This retained the original neural network structure but added a PCA layer that182

projected the 39 output features into a smaller feature space of only 16 dimensions, previously defined183

by the expert, before projecting them back to the 39 output features. The results showed a significant184

drop in performance, with a mean reward of 41 and a standard deviation of 2. The episode length was185

also much shorter at 22.5 with a standard deviation of 1.5, indicating a quicker failure rate and less186

robustness in maintaining performance.The drastic reduction in feature space seems to have been187

too severe, potentially omitting necessary information for making effective decisions. This suggests188

that there is a critical threshold below which further reduction in dimensionality adversely affects the189

model’s capability to function effectively.190

Experiment 4: This setup is built on the third experiment by adding exploration of the reduced191

feature space before mapping back to the original action space. The slight decrease in mean reward192

to 39 and an episode length of 21.5, both with small standard deviations of 2.1 and 0.9, indicates a193

continued struggle in leveraging the reduced feature space effectively, even with the added exploration194

phase. The results suggest that simply spending more time within this space is not sufficient to195

compensate for the loss of critical information due to excessive compression, although the exploration196

of the reduced feature space was a logical step.197

4.2.3 Evaluation:198

The first two experiments demonstrated significantly higher rewards and episode lengths compared199

to the last two. The higher performance suggests that, in these initial experiments, the models200

were at least able to maintain control over the task (e.g., holding the balls) for longer periods,201

which is the initial step of the curriculum learning SDS according to the project paper, although202

they struggled with more complex manipulations like correctly rotating the balls, as indicated in203
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the skeletal simulations. The significantly lower rewards and episode durations in the latter two204

experiments suggest difficulties in basic task retention, such as holding the balls, which was visually205

confirmed through the simulations.206

5 Discussion207

5.1 Evaluating Task-Specific Performance Through PCA208

The series of experiments underscores the critical role of selecting an appropriate number of principal209

components (PCs) in feature reduction strategies. This choice must align with the complexity of the210

tasks to ensure effective performance. In these experiments, the reconstruction from the reduced211

feature space maintains consistent basic actions but smooths out the intensity of muscle activation,212

eliminating minor variations. This smoothing occurs because the agent struggles to fully execute all213

its tasks within the constricted feature space214

For instance, while the agent learns to hold the balls, a task that does not require fine variations,215

it fails to effectively rotate the balls, which demands maximal muscle extension. This limitation216

in the model’s learning process induced by the smoothing prevents it from extending the muscles217

sufficiently to perform complex tasks like ball rotation. Consequently, while this effect allows the218

agent to capture overall behavior more efficiently, it overlooks crucial, nuanced movements essential219

for complete task execution.220

Given that Experiment 1 demonstrated a capability to achieve a reward of 400 just by holding the221

balls, we suggest a potential to sequentially train the model on more complex tasks such as ball222

rotation and then boarding. Since training to hold the balls was accomplished in just 4 hours, it is223

projected that training the model to perform all three tasks, holding, rotating, and boarding, could be224

completed in less than 24 hours. This is a substantial reduction from the 400 hours initially cited in225

the literature, indicating a significant efficiency improvement in the training process.226

5.2 Optimizing Dimensionality Reduction Strategies for Enhanced Model Training227

The strategic selection of 16 principal components (PCs) for the action space and 40 PCs for the228

feature space of the last hidden layer was intended to maintain explained variances above 0.9 and 0.88229

respectively. However, the model’s persistent struggles, particularly with tasks involving ball rotation,230

suggest that the lower variations excluded from the model (those accounting for the remaining 0.1231

and 0.12 of variance) are indeed critical for complete training success. Since the explained variance232

is highly task-specific and our model manages intricate details like training 39 distinct muscles, it233

appears necessary to include more variance by increasing the explained variance percentage for both234

action and feature spaces.235

In light of this, discussions with the supervisor have showed that it was recommended to adjust the236

number of components for the action space to 24 instead of 16. This adjustment aims to preserve237

more of the essential variations needed for comprehensive model training.238

Moreover, the use of Principal Component Analysis (PCA) itself may need reconsideration. While239

PCA is effective for reducing dimensionality by capturing maximum variance within fewer dimen-240

sions, it might not be the most suitable method for tasks that involve complex, dependent actions like241

the ones our model is trained on. Alternative dimensionality reduction techniques might be more242

appropriate like Independent Component Analysis (ICA) which, unlike PCA, that prioritizes direc-243

tions that maximize variance, focuses on finding components that are statistically independent from244

each other. This could be particularly advantageous in tasks where independent features contribute245

uniquely to performance outcomes.246

Additionally, experimenting with the positioning of the PCA layer within the neural network archi-247

tecture might yield improvements. Shifting the PCA layer to different points between other layers248

could potentially optimize the variance explained, ensuring that essential information is not lost249

during dimension reduction. This approach may validate whether an explained variance of 0.9, for250

example, is sufficient to maintain the necessary components for the model to learn effectively without251

significant loss of crucial details.252
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6 Conclusion253

The experiments conducted in this study reveal significant insights into the efficiency of dimensionality254

reduction and policy distillation strategies for training RL agents in motor control tasks. While255

reducing the observation and action spaces aids in simplifying the learning environment, it is crucial256

to balance the extent of reduction to avoid losing critical information necessary for task execution.257

The results indicate that a careful selection of the number of principal components and strategically258

placing the projection layer within the neural network architecture are keys to maintaining an effective259

learning process. Moreover, transitioning from novice to expert performance can be optimized by260

adjusting the dimensional reduction techniques to enhance learning outcomes. Future work should261

explore alternative dimensionality reduction techniques and different configurations of the learning262

architecture to further improve the efficiency and effectiveness of training RL agents in complex263

motor tasks.264
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